Citation: HE Sai-Nan, HU Cai-Yuan, XIAO Ge, ZHENG Hua-Jun. Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 630-634. doi: 10.3866/PKU.WHXB201112214 shu

Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers

  • Received Date: 14 October 2011
    Available Online: 21 December 2011

    Fund Project: 国家自然科学基金(20973156)资助项目 (20973156)

  • A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route. The morphological characterization was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction (XRD), Brunauer- Emmett-Teller (BET) surface area analyses, and an electrochemical workstation (EW). A glassy carbon electrode (GCE) modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide (H2O2) in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V. The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1 H2O2 based on a MnO2 nanofiber-gelatin/GCE electrode. The amperometric signals are linearly proportional to the H2O2 concentration in the range 0.1-1.5 mmol·L-1 with a correlation coefficient of 0.996 using the GCE modified with 0.1% (w, mass fraction) cryptomelane-type manganese oxides. The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides. In addition, the sensor has a od reproducibility, a low detection limit, simplicity, and a low cost of construction. These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class of nanostructured electrodes for biosensors.
  • 加载中
    1. [1]

      (1) Eftekhari, A. Microchim. Acta 2003, 141, 15.  

    2. [2]

      (2) Huo, H. Y.; Luo, H. Q.; Li, N. B. Microchim. Acta 2009, 167, 195.  

    3. [3]

      (3) Zhang, Y.; Kang, T. F.;Wan, Y.W.; Chen, S. Y. Microchim. Acta 2009, 165, 307.  

    4. [4]

      (4) Martinez, M. T.; Lima, A. S.; Bocchi, N.; Teixeira, M. F. S. Talanta 2009, 80, 519.  

    5. [5]

      (5) Teixeira, M. F. D. S.; Fatibello-Filho, O.; Ferracin, L. C.; Rocha-Filho, R. C.; Bocchib, N. Sensors and Actuators B 2000, 67, 96.  

    6. [6]

      (6) Xiao, T. D.; Strutt, P. R.; Benaissa, M.; Chen, H.; Kear, B. H. Nanostruct. Mater. 1998, 10, 1051.  

    7. [7]

      (7) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2001, 124, 2880.

    8. [8]

      (8) Wang, X.; Li, Y. D. Chem. Commun. 2002, 764.

    9. [9]

      (9) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem. Eur. J. 2003, 9, 1645.  

    10. [10]

      (10) Han, L.; Ni, J. P.; Zhang, L. M.; Yue, B. H.; Shen, S. S.; Zhang, H.; Lu,W. C. Acta Phys. -Chim. Sin. 2011, 27, 743. [韩玲, 倪纪朋, 张良苗, 岳宝华, 申杉杉, 张浩, 陆文聪. 物理化学学报, 2011, 27, 743.]

    11. [11]

      (11) Sun, Z.; Liu, K. Y.; Zhang, H. F.; Li, A. S.; Xu, X. C. Acta Phys. -Chim. Sin. 2009, 25, 1991. [孙哲, 刘开宇, 张海峰, 李傲生, 徐小存. 物理化学学报, 2009, 25, 1991.]

    12. [12]

      (12) Lin, Y. H.; Cui, X. L.; Li, L. Y. Electrochem. Commun. 2004, 7, 166.

    13. [13]

      (13) Yao, S. J.; Yuan, S.; Xu, J. H.;Wang, Y.; Luo, J. L.; Hu, S. S. Appl. Clay Sci. 2006, 33, 35.  

    14. [14]

      (14) Sljukic, B.; Compton, R. G. Electroanalysis 2007, 19, 1275.  

    15. [15]

      (15) Cui, X. L.; Liu, G. D.; Lin, Y. H. Nanomedicine 2005, 1, 130.  

    16. [16]

      (16) Hocevar, S. B.; O revc, B.; Schachl, K.; Kalcher, K. Electroanalysis 2004, 16, 20.

    17. [17]

      (17) Chen, J.; Zhang,W. D.; Ye, J. S. Electrochem. Commun. 2008, 10, 1268.  

    18. [18]

      (18) Bai, Y. H.; Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2007, 9, 2611.  

    19. [19]

      (19) Tian, Z.; Tong,W.;Wang, J.; Duan, N.; Krishnan, V. V.; Suib, S. L. Science 1999, 276, 926.

    20. [20]

      (20) Xia, G. G.; Yin, Y. G.;Willis,W. S.;Wang, J. Y.; Suib, S. L. J. Catal. 1999, 185, 91.  

    21. [21]

      (21) Son, Y. C.; Makwana, V. D.; Howell, A. R.; Suib, S. L. Angew. Chem. Int. Edit. 2001, 40, 4280.  

    22. [22]

      (22) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185.  

    23. [23]

      (23) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 306.

    24. [24]

      (24) Emir, T.; Kalcher, K.; Schachl, K.; Komersova, A.; Bartos, M.; Moderegg, H.; Svancara, I.; Vytras, K. Anal. Lett. 2001, 34, 2633.  

    25. [25]

      (25) Yin, L.; Chou, J.; Chung,W.; Sun, T.; Hsiung, K.; Hsiung, S. Sensors and Actuators B 2001, 76, 187.  

  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    9. [9]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    10. [10]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    17. [17]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(929)
  • Abstract views(2136)
  • HTML views(55)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return