Citation:
HE Sai-Nan, HU Cai-Yuan, XIAO Ge, ZHENG Hua-Jun. Hydrothermal Synthesis and Amperometric Determination of Hydrogen Peroxide of Highly-Dispersed MnO2 Nanofibers[J]. Acta Physico-Chimica Sinica,
;2012, 28(03): 630-634.
doi:
10.3866/PKU.WHXB201112214
-
A high dispersed nanofiber cryptomelane-type manganese dioxide was synthesized by a facile hydrothermal reduction route. The morphological characterization was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and electrochemical properties of the synthesized manganese dioxide were characterized by X-ray diffraction (XRD), Brunauer- Emmett-Teller (BET) surface area analyses, and an electrochemical workstation (EW). A glassy carbon electrode (GCE) modified with the nanostructured cryptomelane-type manganese dioxide was investigated for amperometric detection of hydrogen peroxide (H2O2) in phosphate buffer solution with a pH 7.4 at an open circuit potential of 0.2 V. The oxidation peak current was found to increase by 1.3 μA with the addition of 0.1 mmol·L-1 H2O2 based on a MnO2 nanofiber-gelatin/GCE electrode. The amperometric signals are linearly proportional to the H2O2 concentration in the range 0.1-1.5 mmol·L-1 with a correlation coefficient of 0.996 using the GCE modified with 0.1% (w, mass fraction) cryptomelane-type manganese oxides. The sensor is sensitive and its significant electrocatalytic activity results from the nanostructure of the cryptomelane-type manganese oxides. In addition, the sensor has a od reproducibility, a low detection limit, simplicity, and a low cost of construction. These results demonstrate that this material with high electrocatalytic activity offers great promise as a new class of nanostructured electrodes for biosensors.
-
-
- [1]
-
[2]
(2) Huo, H. Y.; Luo, H. Q.; Li, N. B. Microchim. Acta 2009, 167, 195.
-
[3]
(3) Zhang, Y.; Kang, T. F.;Wan, Y.W.; Chen, S. Y. Microchim. Acta 2009, 165, 307.
-
[4]
(4) Martinez, M. T.; Lima, A. S.; Bocchi, N.; Teixeira, M. F. S. Talanta 2009, 80, 519.
-
[5]
(5) Teixeira, M. F. D. S.; Fatibello-Filho, O.; Ferracin, L. C.; Rocha-Filho, R. C.; Bocchib, N. Sensors and Actuators B 2000, 67, 96.
-
[6]
(6) Xiao, T. D.; Strutt, P. R.; Benaissa, M.; Chen, H.; Kear, B. H. Nanostruct. Mater. 1998, 10, 1051.
-
[7]
(7) Wang, X.; Li, Y. D. J. Am. Chem. Soc. 2001, 124, 2880.
-
[8]
(8) Wang, X.; Li, Y. D. Chem. Commun. 2002, 764.
-
[9]
(9) Xiong, Y. J.; Xie, Y.; Li, Z. Q.;Wu, C. Z. Chem. Eur. J. 2003, 9, 1645.
-
[10]
(10) Han, L.; Ni, J. P.; Zhang, L. M.; Yue, B. H.; Shen, S. S.; Zhang, H.; Lu,W. C. Acta Phys. -Chim. Sin. 2011, 27, 743. [韩玲, 倪纪朋, 张良苗, 岳宝华, 申杉杉, 张浩, 陆文聪. 物理化学学报, 2011, 27, 743.]
-
[11]
(11) Sun, Z.; Liu, K. Y.; Zhang, H. F.; Li, A. S.; Xu, X. C. Acta Phys. -Chim. Sin. 2009, 25, 1991. [孙哲, 刘开宇, 张海峰, 李傲生, 徐小存. 物理化学学报, 2009, 25, 1991.]
-
[12]
(12) Lin, Y. H.; Cui, X. L.; Li, L. Y. Electrochem. Commun. 2004, 7, 166.
-
[13]
(13) Yao, S. J.; Yuan, S.; Xu, J. H.;Wang, Y.; Luo, J. L.; Hu, S. S. Appl. Clay Sci. 2006, 33, 35.
-
[14]
(14) Sljukic, B.; Compton, R. G. Electroanalysis 2007, 19, 1275.
-
[15]
(15) Cui, X. L.; Liu, G. D.; Lin, Y. H. Nanomedicine 2005, 1, 130.
-
[16]
(16) Hocevar, S. B.; O revc, B.; Schachl, K.; Kalcher, K. Electroanalysis 2004, 16, 20.
-
[17]
(17) Chen, J.; Zhang,W. D.; Ye, J. S. Electrochem. Commun. 2008, 10, 1268.
-
[18]
(18) Bai, Y. H.; Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2007, 9, 2611.
-
[19]
(19) Tian, Z.; Tong,W.;Wang, J.; Duan, N.; Krishnan, V. V.; Suib, S. L. Science 1999, 276, 926.
-
[20]
(20) Xia, G. G.; Yin, Y. G.;Willis,W. S.;Wang, J. Y.; Suib, S. L. J. Catal. 1999, 185, 91.
-
[21]
(21) Son, Y. C.; Makwana, V. D.; Howell, A. R.; Suib, S. L. Angew. Chem. Int. Edit. 2001, 40, 4280.
-
[22]
(22) Liu, J.; Makwana, V.; Cai, J.; Suib, S. L.; Aindow, M. J. Phys. Chem. B 2003, 107, 9185.
-
[23]
(23) Wang, X.; Li, Y. D. Chem. Eur. J. 2003, 9, 306.
-
[24]
(24) Emir, T.; Kalcher, K.; Schachl, K.; Komersova, A.; Bartos, M.; Moderegg, H.; Svancara, I.; Vytras, K. Anal. Lett. 2001, 34, 2633.
-
[25]
(25) Yin, L.; Chou, J.; Chung,W.; Sun, T.; Hsiung, K.; Hsiung, S. Sensors and Actuators B 2001, 76, 187.
-
-
-
[1]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[2]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[3]
Xiaofei Liu , He Wang , Li Tao , Weimin Ren , Xiaobing Lu , Wenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008
-
[4]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[5]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[6]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[7]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[8]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[9]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[10]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029
-
[11]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[12]
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
-
[13]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029
-
[14]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[15]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[16]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[17]
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
-
[18]
Bizhu Shao , Huijun Dong , Yunnan Gong , Jianhua Mei , Fengshi Cai , Jinbiao Liu , Dichang Zhong , Tongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026
-
[19]
Yan Kong , Wei Wei , Lekai Xu , Chen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049
-
[20]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[1]
Metrics
- PDF Downloads(929)
- Abstract views(2137)
- HTML views(55)