Citation: FAN Li-Tao, LI Ying, WU Di, LI Zhi-Ru, SUN Chia-Chung. Structures and Nonlinear Optical Properties of the Alkalides M+aza222M′- (M, M′=Li, Na, K)[J]. Acta Physico-Chimica Sinica, ;2012, 28(03): 555-560. doi: 10.3866/PKU.WHXB201112212 shu

Structures and Nonlinear Optical Properties of the Alkalides M+aza222M′- (M, M′=Li, Na, K)

  • Received Date: 12 October 2011
    Available Online: 21 December 2011

    Fund Project: 国家自然科学基金(21043003, 21173095)资助项目 (21043003, 21173095)

  • Using density functional theory with the B3LYP functional, the optimized structures of the organic alkalides M+ aza222M′- (M, M′ =Li, Na, K, and aza222=Azacryptand[2.2.2]) were calculated. The nonlinear optical (NLO) properties of these species were calculated by the BHandHLYP method. The results indicate that the M+aza222M′- alkalides exhibit very large first hyperpolarizabilities (β0) up to 1.0×106 a.u. (for M=Li, M′ =K). Both the first hyperpolarizabilities and the M-M′ distances of M+aza222M′- were found to depend on the atomic number of the alkali metal atom M(M′). By comparing the β0 values of various organic alkalides, aza222 was found to be preferable to the previously investigated complexants in enhancing the first hyperpolarizabilities of alkalides.
  • 加载中
    1. [1]

      (1) Eaton, D. F. Science 1991, 253, 281.  

    2. [2]

      (2) Geskin, V. M.; Lambert, C.; Bre′das, J. L. J. Am. Chem. Soc. 2003, 125, 15651.  

    3. [3]

      (3) Nakano, M.; Fujita, H.; Takahata, M.; Yamaguch, K. J. Am. Chem. Soc. 2002, 124, 9648.  

    4. [4]

      (4) Kirtman, B.; Champagne, B.; Bishop, D. M. J. Am. Chem. Soc. 2000, 122, 8007.  

    5. [5]

      (5) Avramopoulos, A.; Reis, H. L. J.; Papadopoulos, M. G. J. Am. Chem. Soc. 2004, 126, 6179.  

    6. [6]

      (6) Qiu, Y. Q.; Liu, C. G.; Chen, H.; Su, Z. M.; Yang, G. C.;Wang, R. S. Acta Phys. -Chim. Sin. 2006, 22, 836. [仇永清, 刘春光, 陈徽, 苏忠民, 杨国春, 王荣顺. 物理化学学报, 2006, 22, 836.]  

    7. [7]

      (7) Sun, X. X.; Liu, Y.; Zhao, H. B.; Sun, S. L.; Liu, C. G.; Qiu, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 315. [孙秀欣, 刘艳, 赵海波, 孙世玲, 刘春光, 仇永清. 物理化学学报, 2011, 27, 315.]

    8. [8]

      (8) Li, Y.; Li, Z. R.;Wu, D.; Li, R. Y.; Hao, X. Y.; Sun, C. C. J. Phys. Chem. B 2004, 108, 3145.  

    9. [9]

      (9) Chen,W.; Li, Z. R.; Li, Y.; Sun, C. C.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2006, 128, 1072.  

    10. [10]

      (10) Xu, H. L.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2007, 129, 2967.  

    11. [11]

      (11) Chen,W.; Li, Z. R.;Wu, D.; Gu, F. L.; Hao, X. Y.;Wang, B. Q.; Li, R. J.; Sun, C. C. J. Chem. Phys. 2004, 121, 10489.  

    12. [12]

      (12) Jing, Y. Q.; Li, Z. R.;Wu, D.; Li, Y.;Wang, B. Q.; Gu, F. L. J. Phys. Chem. B 2006, 110, 11725.  

    13. [13]

      (13) Dye, J. L.; Ceraso, J. M.; Lok, M. T.; Barnett, B. L.; Tehan, F. J. J. Am. Chem. Soc. 1974, 96, 608.  

    14. [14]

      (14) Tehan, F. J.; Barnett, B. L.; Dye, J. L. J. Am. Chem. Soc. 1974, 96, 7203.  

    15. [15]

      (15) Chen,W.; Li, Z. R.;Wu, D.; Li, Y.; Sun, C. C.; Gu, F. L.; Aoki, Y. J. Am. Chem. Soc. 2006, 128, 1072.  

    16. [16]

      (16) Chen,W.; Li, Z. R.;Wu, D.; Li, Y.; Li, R. Y.; Sun, C. C. J. Phys. Chem. A 2005, 109, 2920.  

    17. [17]

      (17) Wang, F. F.; Li, Z. R.;Wu, D.;Wang, B. Q.; Li, Y.; Li, Z. J.; Chen,W.; Yu, G. T.; Gu, F. L.; Aoki, Y. J. Phys. Chem. B 2008, 112, 1090.

    18. [18]

      (18) Kim, J.; Ichimura, A. S.; Huang, R. H.; Redko, M.; Phillips, R. C.; Jackson, J. E.; Dye, J. L. J. Am. Chem. Soc. 1999, 121, 10666.  

    19. [19]

      (19) Champagne, B.; Perpete, E. A.; Jacquenmin, D.; van Gisbergen; A., S. J.; Baerends, E. J.; Soubra-Ghaoui, C.; Robins, K. A. J. Phys. Chem. A 2000, 104, 4755.  

    20. [20]

      (20) Champagne, B.; Botek, E.; Nakano, M.; Nitta, T.; Yamaguchi, K. J. Chem. Phys. 2005, 122, 114315.  

    21. [21]

      (21) Nakano, M.; Kishi, R.; Nitta, T.; Kubo, T.; Nakasuji, K.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; Yamaguchi, K. J. Phys. Chem. A 2005, 109, 885.  

    22. [22]

      (22) Reed, A. E.;Weinstock, R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 735.  

    23. [23]

      (23) Frisch, M. J.; Truchs, G.W.; Schlegel, H. B.; et al . Gaussian 09, Revision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    24. [24]

      (24) Dennington, R. T. K.; Millam, J.; Eppinnett, K.; Hovell,W. L.; Gilliland, R. GaussView, version 3.09; Semichem, Inc.: Shawnee Mission, KS, 2003.

    25. [25]

      (25) Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 2005, 66, 2664.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    4. [4]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    5. [5]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    6. [6]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    9. [9]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    12. [12]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    16. [16]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    17. [17]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

Metrics
  • PDF Downloads(781)
  • Abstract views(2620)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return