Citation: WANG Qing, CHU Yan-Qiu, ZHANG Kai, DAI Xin-Hua, FANG Xiang, DING Chuan-Fan. Effect of Alkali Metal Ions on the Dissociation of Glycine Pentapeptide in the Gas Phase[J]. Acta Physico-Chimica Sinica, ;2012, 28(04): 971-977. doi: 10.3866/PKU.WHXB201112201 shu

Effect of Alkali Metal Ions on the Dissociation of Glycine Pentapeptide in the Gas Phase

  • Received Date: 3 November 2011
    Available Online: 20 December 2011

    Fund Project: 国家科技支撑计划(2009BAK60B03) (2009BAK60B03)国家重大科学仪器设备开发专项(2011YQ09005)资助项目 (2011YQ09005)

  • To obtain more structural information of polypeptides, glycine pentapeptide (simplified as GGGGG or G5) was chosen as a model to investigate the impact of alkali metal ions on the dissociation of GGGGG in the gas phase. Stoichiometric G5 and alkali metal salt solutions, including Li + , Na+ , K+ , Rb+ , were mixed, respectively, and then the solutions were left to stand at room temperature for 10 h to reach equilibrium. The mass spectrometric results indicated that the alkali metal ions and G5 could form 1:1 or 2: 1 non-covalent complexes in solution. The energy of the collision induced dissociation (CID) was 25 eV. The gas phase CID results demonstrate that in the 1:1 complexes, the extent of fragmentation decreases according to the order: Li+, Na+, K+, Rb+. Moreover, the unusual c, z ions were observed in the Rb+ complex. In the 2:1 non-covalent complexes, the extent of fragmentation increases according to the order: Li+ , Na+ , K+, Rb+. The gas phase dissociation of the Na+, K+, Rb+ 2:1 complexes are easier than their 1:1 complexes. Except for Li + , the activation abilities of the double metal ions to G5 are stronger than that of the single metal ion to G5, which can induce more dissection sites in the glycine pentapeptide and lead to the formation of more kinds of fragment ions.
  • 加载中
    1. [1]

      (1) Hughes, M. N. The Inorganic Chemistry of Biological Processes, 2nd ed;Wiley: New York, 1972; pp 89-124, 257-295.

    2. [2]

      (2) Gress, R. P.; Gross, M. L. J. Am. Chem. Soc. 1990, 112, 5098.  

    3. [3]

      (3) Jia,W. T.; Lu, H. J.; Yun, D.; Yang, P. Y. Acta Chim. Sin. 2008, 65 (3), 177. [贾韦韬, 陆豪杰, 贠栋, 杨芃原. 化学学报, 2008, 65 (3), 177.]

    4. [4]

      (4) Chu, Y. Q.; Dai, X. H.; Jiang, D.; Fang, X.; Ding, C. F. Rapid Commun. Mass Spectrom. 2010, 24, 2255.  

    5. [5]

      (5) Dai, X. H.; Chu, Y. Q.; Jiang, D.; He, X. D.; Fang, X.; Ding, C. F. Chin. J. Anal. Chem. 2010, 38 (12), 1747. [戴新华, 储艳秋, 姜丹, 何小丹, 方向, 丁传凡. 分析化学, 2010, 38 (12), 1747.]

    6. [6]

      (6) Li, P.; Liu, B. Y.;Wang, H. L.; Li, A. L.;Wang, H. X. Chin. J. Anal. Chem. 2007, 35 (1), 87. [李萍, 刘炳玉, 王鸿丽, 李爱玲, 王红霞. 分析化学, 2007, 35 (1), 87.]

    7. [7]

      (7) Yu, C. T.; Guo, Y. L. Acta Chim. Sin. 2001, 59 (4), 615. [余翀天, 郭寅龙. 化学学报, 2001, 59 (4), 615.]

    8. [8]

      (8) Biemann, K. Methods Enzymol. 1990, 193, 455.  

    9. [9]

      (9) Biemann, K. Annu. Rev. Biochem. 1992, 61, 977.  

    10. [10]

      (10) Papayannopoulos, I. A. Mass Spectrom. Rev. 1995, 14, 49.  

    11. [11]

      (11) Dai, Z. Y.; Chu, Y. Q.;Wu, B.;Wu, L.; Ding, C. F. Acta Pharmcol. Sin. 2008, 29 (6), 759.

    12. [12]

      (12) He, X. D.; Jiang, D.; Chen, C.; Chu, Y. Q.; Ding, C. F. Acta Phys. -Chim. Sin. 2010, 26 (10), 2604. [何小丹, 姜丹, 陈琛, 储艳秋, 丁传凡. 物理化学学报, 2010, 26 (10), 2604.]

    13. [13]

      (13) Zhang, E.; Zu, L. L.; Fang,W. H.; Huang, L. Y.; He, D. C. Chem. J. Chin. Univ. 2008, 29 (6), 1185. [张娥, 祖莉莉, 方维海, 黄凌云, 何大澄. 高等学校化学学报, 2008, 29 (6), 1185.]

    14. [14]

      (14) Nair, H.; Somogyi, A.;Wysocki, V. H. J. Mass Spectrom. 1996, 31, 1141.  

    15. [15]

      (15) Dongre, A. R.; Jones, J. L.; Somogyi, A.;Wysocki, V. H. J. Am. Chem. Soc. 1996, 118, 8365.  

    16. [16]

      (16) Wysocki, V. H.; Tsaprailis, G.; Smith, L. L.; Breci, L. A. J. Mass Spectrom. 2000, 35, 1399.  

    17. [17]

      (17) Huang, Y.; Triscari, J. M.; Pasa-Tolic, L.; Anderson, G. A.; Lipton, M. S.; Smith, R. D.;Wysocki, V. H. J. Am. Chem. Soc. 2004, 126, 3034.  

    18. [18]

      (18) Tsaprailis, G.; Nair, H.; Zhong,W.; Kuppannan, K.; Futrell, J. H.;Wysocki, V. H. Anal. Chem. 2004, 76, 2083.  

    19. [19]

      (19) Mallis, L.; Russell, M. D. H. Anal. Chem. 1988, 60, 2299.  

    20. [20]

      (20) Leary, J. A.; Zhou, Z. G.; Ogden, S. A.;Williams, T. D. J. Am. Soc. Mass Spectrom. 1990, 1, 473.  

    21. [21]

      (21) Teesch, L. M.; Orlando, R. C.; Adams, J. J. Am. Chem. Soc. 1991, 113, 3668.  

    22. [22]

      (22) Wang, J. Y.; Siu, K.W. M.; Guevremont, R. J. Mass Spectrom. 1996, 31, 159.  

    23. [23]

      (23) Hu, P. F.; Gross, M. L. J. Am. Chem. Soc. 1993, 115, 8821.  

    24. [24]

      (24) Farrugia, J. M.; O'Hair, A. R. J. Int. J. Mass Spectrom. 2003, 222, 229.  

    25. [25]

      (25) Pingitore, F.;Wesdemiotis, C. Anal. Chem. 2005, 77, 1796.  

    26. [26]

      (26) Grese, R. P.; Cerny, R. L.; Gross, M. L. J. Am. Chem. Soc. 1989, 111, 2835.  

  • 加载中
    1. [1]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    2. [2]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    3. [3]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    6. [6]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    7. [7]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    8. [8]

      Ying Wang Quanguo Zhai Zhiqiang Wang Qingjuan Lei Shengli Gao . 无机化学中“碱金属元素”教学内容的重构. University Chemistry, 2025, 40(6): 85-92. doi: 10.12461/PKU.DXHX202407049

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    11. [11]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    14. [14]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    16. [16]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    17. [17]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Chi Zhang Yi Xu Xiaopeng Guo Zian Jie Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061

    20. [20]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

Metrics
  • PDF Downloads(749)
  • Abstract views(2162)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return