Citation: ZHU Yan-Feng, ZHANG Juan, ZHANG Yi-Yong, DING Min, QI Hai-Qing, DU Rong-Gui, LIN Chang-Jian. Anticorrosion Properties of Modified Nano-TiO2 Films Prepared by Sol-Gel Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 393-398. doi: 10.3866/PKU.WHXB201112163 shu

Anticorrosion Properties of Modified Nano-TiO2 Films Prepared by Sol-Gel Method

  • Received Date: 22 August 2011
    Available Online: 16 December 2011

    Fund Project: 国家高技术研究发展计划项目(863) (2009AA03Z327) (863) (2009AA03Z327)国家自然科学基金(21073151 和21173177)资助 (21073151 和21173177)

  • TiO2 and B-Fe-Ce-modified TiO2 films were synthesized on the surfaces of 316L stainless steel (316L SS) substrates using a sol-gel and dip-coating method. The properties of the films were characterized by field emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy and energy dispersive spectrometry. The corrosion resistance of the films and their ability to protect stainless steel were investigated by electrochemical impedance spectroscopy and potentiodynamic polarization curves. Both TiO2 and B-Fe-Ce-modified TiO2 films were composed of anatase nanoparticles about 15 and 10 nm in diameter, respectively. Impedance spectra of the stainless steel substrates coated TiO2 films contained semicircles for capacitive reactance in 0.5 mol·L-1 NaCl solution, but the charge transfer resistance of the B-Fe-Ce-TiO2/316L SS electrode was higher than that of the TiO2/316L SS electrode. The potentiodynamic anodic polarization curve of the B-Fe-Ce-TiO2/316L SS electrode showed a larger stable passive region and a higher breakdown potential than the TiO2/316L SS electrode, indicating that the modified film had better corrosion resistance and protective properties for 316L SS.
  • 加载中
    1. [1]

      (1) Hou, B. R. Corrosion Research and Protection; Ocean Press: Beijing, 1998; p1. [侯保荣.腐蚀研究与防护.北京: 海洋出版杜, 1998: 1].

    2. [2]

      (2) Liu, R. H.; Zhang, P. F. Metal Corrosion Principle; Aviation Industry Press: Beijing, 1993; pp 249-253. [刘永辉, 张佩芬. 金属腐蚀学原理. 北京: 航空工业出版社, 1993: 249-253].

    3. [3]

      (3) Kasten, L. S.; Grant, J. T.; Grebasch, N.; Voevodin, N.; Arnold, F. E.; Donley, M. S. Surf. Coat. Technol. 2001, 140. 11.

    4. [4]

      (4) Hamdy, A. S.; Butt, D. P. Surf. Coat. Technol. 2006, 201, 401.  

    5. [5]

      (5) Jing, F. J.; Jin, F. Y.; Liu, Y.W.;Wan, G. J.; Liu, X. M.; Zhao, X. B.; Fu, R. K. Y.; Leng, Y. X.; Huang, N.; Chu, P. K. J. Vac. Sci. Technol. A 2006, 24, 1790.  

    6. [6]

      (6) Carbajal, G.; Martinez-Villafane, A.; nzalez-Rodriguez, J. G.; Castano, V. M. Anti.-Corros. Method. M. 2001, 48, 241.  

    7. [7]

      (7) Shen, G. X.; Chen, Y. C.; Lin, C. J. Acta Phys.-Chim. Sin. 2005, 21, 485. [沈广霞, 陈艺聪, 林昌键. 物理化学学报, 2005, 21, 485]

    8. [8]

      (8) Akpan, U. G.; Hameed, B. H. Appl. Catal. A.-Gen. 2010, 375, 1.  

    9. [9]

      (9) Ye,W.; Li, J.;Wang, F. H. Elechtrochim. Acta 2006, 51, 4426.  

    10. [10]

      (10) Liu, L.; Li, Y.;Wang, F. H. Elechtrochim. Acta 2006, 52, 2392.

    11. [11]

      (11) Zhu, Y. F.; Du, R. G.; Li, J.; Qi, H. Q.; Lin, C. J. Acta Phys.-Chim. Sin. 2010, 26, 2349. [朱燕峰, 杜荣归, 李静, 漆海清, 林昌键. 物理化学学报, 2010, 26, 2349.]

    12. [12]

      (12) Chan, M. H.; Lu, F. H. The Solid Films 2009, 518, 1369.  

    13. [13]

      (13) Prakasam, H. E.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Phys. Chem. C 2007, 111, 7235.  

    14. [14]

      (14) Chen,W.W.; Gao,W. Elechtrochim. Acta 2010, 55, 6865.  

    15. [15]

      (15) He, Y. D.; Fu, H. F.; Li, X. Q.; Gao,W. Scripta Mater. 2008. 58, 504.

    16. [16]

      (16) Ping, Z. X.; He, Y. D.; Gu, C. D.; Zhang, T. Y. Surf. Coat. Technol. 2008, 202, 6023.  

    17. [17]

      (17) Barati, N.; Faghihi Sani, M. A.; Ghasemi, H.; Sadeghian, Z.; Mirhoseini, S. M. M. Appl. Surf. Sci. 2009, 255, 8328.  

    18. [18]

      (18) Shibli, S. M. A.; Chacko, F. Surf. Coat. Technol. 2011, 205, 2931.  

    19. [19]

      (19) Liu, T.; Zhang, F. F.; Xue, C. R.; Li, L.;Yin, Y. S. Surf. Coat. Technol. 2010, 205, 2335.  

    20. [20]

      (20) Shen, G. X.; Chen, Y. C.; Lin, C. J. Thin Solid Films 2005, 489, 130.  

    21. [21]

      (21) Yun, H.; Li, J.; Chen, H. B.; Lin, C. J. Elechtrochim. Acta 2007, 52, 6679.  

    22. [22]

      (22) Bai, L.Y.; Su, X.Y.; Lei, M. K. J. Inorg. Mater. 2006, 21, 1085. [白凌云, 苏显云, 雷明凯. 无机材料学报, 2006, 21, 1085].

    23. [23]

      (23) Wang, Y.W.; Huang, Y.; Ho,W. K.; Zhang, L. Z.; Zou, Z. G.; Lee, S. C. J. Hazard. Mater. 2009, 169, 77.  

    24. [24]

      (24) Mechiakh, R.; Ben Sedrine, N.; Chtourou, R.; Bensaha, R. Appl. Surf. Sci. 2010, 257, 670.  

    25. [25]

      (25) Zhang, Z. Y.; Shao, C. L.; Zhang, L. N.; Li, X. H.; Liu, Y. C. J. Colloid. Interf. Sci. 2010, 351, 57.  

    26. [26]

      (26) Deng, L. X.;Wang, S. R.; Liu, D. Y.; Zhu, B. L. Huang,W. P. Wu, S. H.; Zhang, S. M. Catal. Lett. 2009, 129, 513.  

    27. [27]

      (27) Yu, T.; Tan, X.; Zhao, L. J. Hazard. Mater. 2010, 176, 829.  

    28. [28]

      (28) Chen, D. M.; Yang, D.;Wang, Q.; Jiang, Z.Y. Ind. Eng. Chem. Res. 2006, 45, 4110.  

    29. [29]

      (29) Bhattacharyya, K.; Varma, S.; Tripathi, A. K.; Bhattacharyya, D.; Mathon, O.; Tyagi, A. K. J. Appl. Phys. 2009, 106.

    30. [30]

      (30) Choi, H. C.; Jung, Y. M.; Kim, S. B. Vib. Spectrosc. 2005, 37, 33.  

    31. [31]

      (31) Shen, G .X.; Chen, Y. C.; Lin, L.; Lin, C. J.; Scantlebury, D. Elechtrochim. Acta 2005, 50, 5038.

    32. [32]

      (32) Hamadou, L.; Kadri, A.; Benbrahim, N. Appl. Surf. Sci. 2005, 252, 1510.  

    33. [33]

      (33) Rammelt, U.; Reinhard, G. Elechtrochim. Acta 1990, 35, 1045.  

    34. [34]

      (34) Leibig, M.; Halsey, T. C. Elechtrochim. Acta 1993, 38, 1985.  

    35. [35]

      (35) Benedeti, A. V.; Sumodjo, P. T. A.; Nobe, K.; Cabot, P. L.; Proud,W. G. Elechtrochim. Acta 1995, 40, 2657.  

  • 加载中
    1. [1]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    2. [2]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    3. [3]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    4. [4]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    7. [7]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    8. [8]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    9. [9]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    10. [10]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    12. [12]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    15. [15]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    19. [19]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    20. [20]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

Metrics
  • PDF Downloads(974)
  • Abstract views(2812)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return