Citation: SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 367-372. doi: 10.3866/PKU.WHXB201112131 shu

Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte

  • Received Date: 11 October 2011
    Available Online: 13 December 2011

    Fund Project: 中国科学院知识创新工程重要方向项目(KJCX2-YW-W26) (KJCX2-YW-W26) 北京市科技计划项目( Z111100056011007) ( Z111100056011007)国家自然科学基金(21001103,51025726)资助 (21001103,51025726)

  • In this work, we prepared activated carbon-based symmetric supercapacitors using Li2SO4 aqueous electrolyte instead of H2SO4 and KOH, and obtained devices with an improved working voltage of 1.6 V from 1.0 V. Cyclic voltammetry and galvanostatic charging/discharging measurements were used to study the electrochemical properties. The results showed that the electrode specific capacitance can reach 129 F·g-1, and the energy density can be as high as 10 Wh·kg-1 at a power density of 160 Wh·kg-1. Electrochemical impedance analysis measurements showed that the charge-transfer resistance of the capacitors decreased markedly with the increase of the concentration of Li2SO4, and the rate capability improved accordingly. The leakage current of the supercapacitor was 0.22 mA after constant-voltage charging at 1.6 V for 1 h, and the columbic efficiency was nearly 100%. The capacitance of the supercapacitor remained above 90% after 5000 charge-discharge cycles. Activated carbon-based supercapacitors using Li2SO4 aqueous electrolyte have many advantages, such as high working voltage, high energy density, and environmental compatibility, and therefore have od industrialization prospects.
  • 加载中
    1. [1]

      (1) Miller, J. R.; Simon, P. Science 2008, 321, 651.  

    2. [2]

      (2) Ji, Q. Q.; Guo, P. Z.; Zhao, X. S. Acta Phys. -Chim. Sin. 2010, 26, 1254. [季倩倩, 郭培志, 赵修松. 物理化学学报, 2010, 26, 1254.]

    3. [3]

      (3) Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai,W.; Ferreira, P. J.; Pirkle, A.;Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Science 2011, 332, 1537.  

    4. [4]

      (4) Simon, P.; tsi, Y. Nat. Mater. 2008, 7, 845.  

    5. [5]

      (5) Chen, Y.; Zhang, X.; Yu, P.; Ma, Y.W. J. Power Sources 2010, 195, 3031.  

    6. [6]

      (6) Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y.W. Carbon 2011, 49, 573.  

    7. [7]

      (7) Zhang, D. C.; Zhang, X.; Chen, Y.; Yu, P.;Wang, C. H.; Ma, Y. W. J. Power Sources 2011, 196, 5990.  

    8. [8]

      (8) Yu, L. Q.; Chen, S. L.; Chang, S.; Li, Y. H.; Gao, Y. Y.;Wang, G. L.; Cao, D. X. Acta Phys. -Chim. Sin. 2011, 27, 615. [于丽秋, 陈书礼, 常莎, 李云虎, 高胤义, 王贵领, 曹殿学. 物理化学学报, 2011, 27, 615.]

    9. [9]

      (9) Wang, H.; Gao, Q.; Jiang, L. Small 2011, 7, 2454.

    10. [10]

      (10) Lu, X. H.; Zheng, D. Z.; Zhai, T.; Liu, Z. Q.; Huang, Y. Y.; Xie, S. L.; Tong, Y. X. Energ. Environ. Sci. 2011, 4, 2915.  

    11. [11]

      (11) Xu, B.; Zhang, H.; Cao, G. P.; Zhang,W. F.; Yang, Y. S. Prog. Chem. 2011, 23, 605.

    12. [12]

      (12) Xu, B.; Yue, S. F.; Sui, Z. Y.; Zhang, X. T.; Hou, S. S.; Cao, G. P.; Yang, Y. S. Energ. Environ. Sci. 2011, 4, 2826.  

    13. [13]

      (13) Lin, P.; She, Q. J.; Hong, B. L.; Liu, X. A. J.; Shi, Y. N.; Shi, Z.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2010, 157, A818.

    14. [14]

      (14) Deng, L.; Zhu, G.;Wang, J.; Kang, L.; Liu, Z. H.; Yang, Z.; Wang, Z. J. Power Sources doi: 10.1016/j.jpowsour. 2011.09.005.

    15. [15]

      (15) Li,W. C.; Gao, P. C.; Lu, A. H. J. Power Sources 2011, 196, 4095.  

    16. [16]

      (16) Brezesinski, T.;Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146.  

    17. [17]

      (17) Tang,W.; Liu, L.; Tian, S.; Li, L.; Yue, Y.;Wu, Y.; Zhu, K. Chem. Commun. 2011, 47, 10058.  

    18. [18]

      (18) Hu, G. X.; Li, C. X.; ng, H. J. Power Sources 2010, 195, 6977.  

    19. [19]

      (19) Wen, Z. B.; Tian, S.; Qu, Q. T.;Wu, Y. P. Prog. Chem. 2011, 23, 589. [温祖标, 田舒, 曲群婷, 吴宇平. 化学进展, 2011, 23, 589.]

    20. [20]

      (20) Li, J. M.; Chang, K. H.; Hu, C. C. Electrochem. Commun. 2010, 12, 1800.  

    21. [21]

      (21) Lin, Y. P.;Wu, N. L. J. Power Sources 2011, 196, 851.  

    22. [22]

      (22) Mosqueda, H. A.; Crosnier, O.; Athouel, L.; Dandeville, Y.; Scudeller, Y.; Guillemet, P.; Schleich, D. M.; Brousse, T. Electrochim. Acta 2010, 55, 7479.  

    23. [23]

      (23) Zhang, X.; Yang,W. S.; Ma, Y.W. Electrochem. Solid. St. 2009, 12, A95.

    24. [24]

      (24) Qu, Q. T.;Wang, B.; Yang, L. C.; Shi, Y.; Tian, S.;Wu, Y. P. Electrochem. Commun. 2008, 10, 1652.  

    25. [25]

      (25) Demarconnay, L.; Raymundo-Piñ?ero, E.; Béguin, F. Electrochem. Commun. 2010, 12, 1275.  

    26. [26]

      (26) Béguin, F.; Jurewicz, K.; Frackowiak, E. Appl. Phys. A 2004, 78, 981.  

    27. [27]

      (27) Khomenko, V.; Raymundo-Pin?ero, E.; Béguin, F. J. Power Sources 2010, 195, 4234.  

    28. [28]

      (28) Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. J. Electrochem. Soc. 2009, 156, A435.

    29. [29]

      (29) Li, J.; Lai, Y. Q.; Jin, X. D.; Peng, R. F.; Liu, Y. X. Chinese Battery Industry 2010, 15, 131. [李晶, 赖延清, 金旭东, 彭汝芳, 刘业翔. 电池工业, 2010, 15, 131.]

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    8. [8]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    9. [9]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    14. [14]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    15. [15]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    18. [18]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    19. [19]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    20. [20]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

Metrics
  • PDF Downloads(1451)
  • Abstract views(2766)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return