Citation: YAN Bing-Xi, LUO Sheng-Yun, SHEN Jie. Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 381-386. doi: 10.3866/PKU.WHXB201112123 shu

Photoelectric Properties of Mo Doped TiO2 Thin Films Deposited by DC Reactive Magnetron Sputtering

  • Received Date: 5 September 2011
    Available Online: 12 December 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2010CB933703, 2012CB934303)资助 (973) (2010CB933703, 2012CB934303)

  • Nanocrystalline TiO2 thin films doped with different concentrations of Mo were deposited by direct current (DC) reactive magnetron sputtering. The influence of Mo on surfaces, crystal structures, the valence states of elements and the absorption band of Mo doped TiO2 films were characterized by means of atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Ultraviolet-visible spectroscopy (UV-Vis). To investigate the photoelectric characteristic of ITO (indium tin oxide)/Mo-TiO2 electrodes, a series of cyclic voltammetry experiments were conducted. The results indicate that an appropriate amount of Mo atoms, observed as Mo6+ and Mo5+ by XPS, could inhibit the crystal growth of particles, enhance the surface roughness of the Mo doped TiO2 thin film, and bring about a remarkable red shift of the absorption spectra. As the concentration of Mo increased, the energy gap declined at first until the amount of doped Mo eventually reached 3.6% (n(Mo)/n(Ti)), when a blue shift of spectra resulted and the energy gap grew wider. The sample doped with 0.9% Mo was irradiated with a Xe lamp and showed the highest photocurrent, which continued to increase with increasing voltage exerted on the anode. An increase in Mo concentration resulted in a decrease in photocurrent. Compared to the pure TiO2 film, the sample with 3.6% Mo had a much lower photocurrent. Our experiments demonstrate that Mo doping, when the concentration was controlled under a relatively low limit, brought about a significant improvement of the photoelectric properties of the TiO2 films. The highest photocurrent observed is 2.4 times that of the sample with no Mo doping.
  • 加载中
    1. [1]

      (1) Fujishima, A.; Hashimoto, K.;Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; BKC Inc. Press: Tokyo, 1999.

    2. [2]

      (2) Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25 (9), 1829. [张晓艳, 崔晓莉. 物理化学学报, 2009, 25 (9), 1829.]

    3. [3]

      (3) Nair, P. B.; Justinvictor, V. B.; Daniel, G. P. Appl. Surf. Sci. 2011, 257, 10869.  

    4. [4]

      (4) Du, Y. K.; Gan, Y. Q.; Hua, N. P. Chem. Res. Appl. 2004, 16, 802. [杜玉扣, 甘玉琴, 华南平. 化学研究与应用, 2004, 16, 802.]

    5. [5]

      (5) Zhan, S. X.; Fan, S. M.; Lin, Z. M. Acta Sci. Nat. Univ. Suny. 2001, 40 (2), 125. [湛社霞, 范山湖, 林作梅. 中山大学学报 (自然科学版), 2001, 40 (2), 125.]

    6. [6]

      (6) Lu, P.; Yao, M. M.; Zhang, Y.; Xia, G. M. Bull. Chin. Cer. Soc. 2003, 22 (2), 34. [卢萍, 姚明明, 张颖, 夏光明. 硅酸盐通报, 2003, 22 (2), 34.]

    7. [7]

      (7) Aramend, M. A.; Colmenares, J. C.; Marinas, A. Catal. Today 2007, 128 (3-4), 235.

    8. [8]

      (8) Wilke, K.; Breuer, H. Photochem. Photobio. A: Chem. 1999, 121 (1), 49.

    9. [9]

      (9) Cui, X. L.; Jiang, Z. Y. Prog. Chem. 2002, 14 (5), 325. [崔晓莉, 江志裕. 化学进展, 2002, 14 (5), 325.]

    10. [10]

      (10) Du, Y. K.; Gan, Y. Q.; Yang, P.; Cuie, Z.; Hua, N. P. Mater. Chem. Phys. 2007, 103, 446.  

    11. [11]

      (11) Shahmoradi, B.; Ibrahim, I. A.; Sakamoto, N.; Ananda, S.; Guru, T. N.; Soga, K; Byrappa, K.; Parsons, S.; Shimizu, Y. Environ. Technol. 2010, 31 (11), 1213.

    12. [12]

      (12) Li, C. X.; Zhang, D.; Jiang, Z. H. New J. Chem. 2010, 35, 423.

    13. [13]

      (13) Vomiero, A.; Della, M. G.; Ferroni, M.; Martinelli. G.; Guidi, V.; Comini, E.; Sberveglieri, G.; Mater. Sci. Engin. B 2003, 101 , 216.

    14. [14]

      (14) Jeon, M. S.; Yoon,W. S.; Joo, H.; Lee, T. K.; Lee, H. Appl. Surf. Sci. 2000, 165 (2-3), 209.

    15. [15]

      (15) Dong, P. Y.; Liu, B.;Wang, Y. H.; Pei, H. H. J. Mater. Res. 2010, 25 (12), 2392.

    16. [16]

      (16) Tan, K. Q.; Zhang, H. R.; Xie, C. F.; Zheng, H.W.; Gu, Y. Z.; Zhang,W. F. Catal. Commun. 2010, 11, 331.  

    17. [17]

      (17) Chen, G. H.; Yan, R. Q.; Liang, H. D. Bull. Chin. Cer. Soc. 2009, 28 (5), 944. [陈桂华, 闫瑞强, 梁华定. 硅酸盐通报, 2009, 28 (5), 944.]

    18. [18]

      (18) Al-Kandari, H.; Al-Kharafi, F.; Katrib, A. Appl. Catal. A: Gen. 2009, 361 (1-2), 81.

    19. [19]

      (19) Ma, H. Q.; Tan, X.; Zhu, H. M. J. Chin. Soc. Rare Earths 2003, 21 (4), 445. [马红钦, 谭欣, 朱慧铭. 中国稀土学报, 2003, 21 (4), 445.]

    20. [20]

      (20) Zhu, J.; Chen, F.; Zhang, J. L.; Chen, H. J.; Anpo, M. J. Photochem. Photobio. A: Chem. 2006, 180 (1-2), 196.

    21. [21]

      (21) Bange, K.; Ottermann, C. R.; Anderson, O.; Jeschkowski, U.; Laube, M.; Feile, R. Thin Solid Films 1991, 197, 279.  

    22. [22]

      (22) pel,W.; Anderson, J. A.; Frnnkel, D. Surf. Sci. 1984, 139, 333.  

    23. [23]

      (23) Yin, L. S.; Zhou, Q. F.; Tang, X. G. J. Funct. Mater. 1999, 30 (5), 498. [尹荔松, 周歧发, 唐新桂. 功能材料, 1999, 30 (5), 498.]

    24. [24]

      (24) Han,W. P.; Yin, X. L.; Li, Y. Z. Chin . J. Catal. 1992, 13 (1), 19. [韩维屏, 尹喜林, 李永战. 催化学报, 1992, 13 (1), 19.]

    25. [25]

      (25) Xie, L. G.;Wang, J. X.; Shen, G. J.;Weng,W. J.; Du, P. Y.; Han, G. R. Funct. Mater. 2005, 36 (3), 411. [谢莲革, 汪建勋, 沈鸽, 翁文剑, 杜丕一, 韩高荣. 功能材料, 2005, 36 (3), 411.]

    26. [26]

      (26) Yu, J. C.; Yu, J.; Ho,W.; Jiang, Z.; Zhang, L. J. Photochem. Photobio. A: Chem. 2002, 14, 3808.

    27. [27]

      (27) Zhang P. Y.; Yu, G.; Jiang, Z. P. Rev. Semicond. Photocatal. Modif. 1997, 5 (3), 1. [张彭义, 余刚, 蒋展鹏. 环境科学进展, 1997, 5 (3), 1.]

    28. [28]

      (28) Zhang,W.; Cui, X. L.; Jiang, Z. Y. Acta Phys. -Chim. Sin. 2008, 24 (11), 1975. [张维, 崔晓莉, 江志裕. 物理化学学报, 2008, 24 (11), 1975.]

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    9. [9]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Yang Li Jiachen Li Daidi Fan . 二硫化钼纳米片的制备及其纳米酶性能探究——介绍一个大学化学综合实验. University Chemistry, 2025, 40(8): 233-240. doi: 10.12461/PKU.DXHX202410016

    13. [13]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    16. [16]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

Metrics
  • PDF Downloads(915)
  • Abstract views(2118)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return