Citation: MAO Jing, DAI Ke-Hua, ZHAI Yu-Chun. High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 349-354. doi: 10.3866/PKU.WHXB201112052 shu

High Rate Capability and Cycling Stability of Li1.07Mn1.93O4 Nanoflakes Synthesized via Gel-Combustion Method

  • Received Date: 18 July 2011
    Available Online: 5 December 2011

  • Li1.07Mn1.93O4 nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone (PVP) as the polymer chelating agent and fuel. Thermogravimetric and differential thermal analyses (TG/DTA) were used to investigate the combustion process of the gel precursor. X-ray diffraction (XRD) analysis indicated that the as-prepared Li1.07Mn1.93O4 was a pure, highly crystalline phase. Scanning electron microscopy (SEM) results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness, and the primary particle of the nanoflakes was about 100 nm in size. Charge and discharge tests suggested that the Li1.07Mn1.93O4 nanoflakes had excellent rate capability and od cycling stability. The initial discharge capacity was 115.4 mAh·g-1 at a rate of 0.5C (1C=120 mAh·g-1) and the capacity was maintained at 105.3 mAh·g-1 at the high discharge rate of 40C. When cycling at 10C, the material retained 81% of its initial capacity after 850 cycles. Electrochemical impedance spectroscopy (EIS) tests indicated that the charge-transfer resistance (Rct) of the Li1.07Mn1.93O4 nanoflakes was much less than that of commercial Li1.07Mn1.93O4.
  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

    2. [2]

      (2) Du Pasquier, A.; Huang, C. C.; Spitler, T. Journal of Power Sources 2009, 186, 508.  

    3. [3]

      (3) Kudo, T.; Honma, I.; Matsuda, H.; Zhou, H. S. Nano Letters 2009, 9, 1045.  

    4. [4]

      (4) Lanz, M.; Kormann, C.; Steininger, H.; Heil, G.; Haas, O.; Novak, P. Journal of the Electrochemical Society 2000, 147, 3997.  

    5. [5]

      (5) Lee, J.W.; Park, S. M.; Kim, H. J. Electrochemistry Communications 2009, 11, 1101.  

    6. [6]

      (6) Lee, K. S.; Myung, S. T.; Bang, H.; Amine, K.; Kim, D.W.; Sun, Y. K. Journal of Power Sources 2009, 189, 494.  

    7. [7]

      (7) Lim, S.; Cho, J. Electrochemistry Communications 2008, 10, 1478.  

    8. [8]

      (8) Ma, S. B.; Nam, K.W.; Yoon,W. S.; Bak, S. M.; Yang, X. Q.; Cho, B.W.; Kim, K. B. Electrochemistry Communications 2009, 11, 1575.  

    9. [9]

      (9) Park, S. C.; Han, Y. S.; Kang, Y. S.; Lee, P. S.; Ahn, S.; Lee, H. M.; Lee, J. Y. Journal of the Electrochemical Society 2001, 148, A680.

    10. [10]

      (10) Park, S. C.; Kim, Y. M.; Kang, Y. M.; Kim, K. T.; Lee, P. S.; Lee, J. Y. Journal of Power Sources 2001, 103, 86.  

    11. [11]

      (11) Wang, X. Q.; Tanaike, O.; Kodama, M.; Hatori, H. Journal of Power Sources 2007, 168, 282.  

    12. [12]

      (12) Yue, H.; Huang, X.; Lv, D.; Yang, Y. Electrochimica Acta 2009, 54, 5363.  

    13. [13]

      (13) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk,W. Nature Materials 2005, 4, 366.  

    14. [14]

      (14) Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angewandte Chemie-International Edition 2008, 47, 2930.  

    15. [15]

      (15) Chen, Z. Y.; Zhu, H. L.; Ji, S.; Linkov, V.; Zhang, J. L.; Zhu,W. Journal of Power Sources 2009, 189, 507.  

    16. [16]

      (16) Kamarulzaman, N.; Yusoff, R.; Kamarudin, N.; Shaari, N. H.; Aziz, N. A. A.; Bustam, M. A.; Bla jevic, N.; Elcombe, M.; Blackford, M.; Avdeev, M.; Arof, A. K. Journal of Power Sources 2009, 188, 274.  

    17. [17]

      (17) Ye, S. H.; Lv, J. Y.; Gao, X. P.;Wu, F.; Song, D. Y. Electrochimica Acta 2004, 49, 1623.

    18. [18]

      (18) Caballero, A.; Cruz, M.; Hernán, L.; Melero, M.; Morales, J.; Castellón, E. R. Journal of Power Sources 2005, 150, 192.  

    19. [19]

      (19) Huang, Y. D.; Jiang, R. R.; Bao, S. J.; Dong, Z. F.; Cao, Y. L.; Jia, D. Z.; Guo, Z. P. Journal of Solid State Electrochemistry 2009, 13, 799.  

    20. [20]

      (20) Shaju, K. M.; Bruce, P. G. Chemistry of Materials 2008, 20, 5557.  

    21. [21]

      (21) Vivekanandhan, S.; Venkateswarlu, M.; Satyanarayana, N. Journal of Alloys and Compounds 2007, 441, 284.  

    22. [22]

      (22) Patey, T. J.; Buchel, R.; Nakayama, M.; Novak, P. Physical Chemistry Chemical Physics 2009, 11, 3756.

    23. [23]

      (23) Patey, T. J.; Buchel, R.; Ng, S. H.; Krumeich, F.; Pratsinis, S. E.; Novak, P. Journal of Power Sources 2009, 189, 149.  

    24. [24]

      (24) Cabana, J.; Valdes-Solis, T.; Palacin, M. R.; Oro-Sole, J.; Fuertes, A.; Marban, G.; Fuertes, A. B. Journal of Power Sources 2007, 166, 492.  

    25. [25]

      (25) Jiao, F.; Bao, J. L.; Hill, A. H.; Bruce, P. G. Angewandte Chemie-International Edition 2008, 47, 9711.  

    26. [26]

      (26) Luo, J. Y.;Wang, Y. G.; Xiong, H. M.; Xia, Y. Y. Chemistry of Materials 2007, 19, 4791.  

    27. [27]

      (27) Katakura, K.;Wada, K.; Kajiki, Y.; Yamamoto, A.; Ogumi, Z. Journal of Power Sources 2009, 189, 240.  

    28. [28]

      (28) Luo, J. Y.; Cheng, L.; Xia, Y. Y. Electrochemistry Communications 2007, 9, 1404.  

    29. [29]

      (29) Uchiyama, H.; Hosono, E.; Zhou, H. S.; Imai, H. Journal of Materials Chemistry 2009, 19, 4012.  

    30. [30]

      (30) Fang, H. S.; Li, L. P.; Yang, Y.; Yan, G. F.; Li, G. S. Journal of Power Sources 2008, 184, 494.  

    31. [31]

      (31) Jiang, C. H.; Dou, S. X.; Liu, H. K.; Ichihara, M.; Zhou, H. S. Journal of Power Sources 2007, 172, 410.  

    32. [32]

      (32) Kim, D. K.; Muralidharan, P.; Lee, H.W.; Ruffo, R.; Yang, Y.; Chan, C. K.; Peng, H.; Huggins, R. A.; Cui, Y. Nano Letters 2008, 8, 3948.  

    33. [33]

      (33) Fey, G.; Cho, Y.; Kumar, T. Materials Chemistry and Physics 2006, 99, 451.  

    34. [34]

      (34) Liu, Q. G.; Yang,W. S.; Zhang, G.; Xie, J. Y.; Yang, L. L. Journal of Power Sources 1999, 81, 412.  

    35. [35]

      (35) Fey, G. T. K.; Cho, Y. D.; Kumar, T. P. Materials Chemistry and Physics 2004, 87, 275.  

    36. [36]

      (36) Kalyani, P.; Kalaiselvi, N.; Muniyandi, N. Journal of Power Sources 2002, 111, 232.  

    37. [37]

      (37) Park, H. B.; Kim, J.; Lee, C.W. Journal of Power Sources 2001, 92, 124.  

    38. [38]

      (38) Subramania, A.; Angayarkanni, N.; Vasudevan, T. Materials Chemistry and Physics 2007, 102, 19.  

    39. [39]

      (39) Wu, X. M.; Li, X. H.; Xiao, Z. B.; Liu, J.; Yan,W. B.; Ma, M. Y. Materials Chemistry and Physics 2004, 84, 182.  

    40. [40]

      (40) Zhang, Y.; Shin, H. C.; Dong, J.; Liu, M. Solid State Ionics 2004, 171, 25.  

    41. [41]

      (41) Amarilla, J. M.; Petrov, K.; Pico, F.; Avdeev, G.; Rojo, J. M.; Rojas, R. M. Journal of Power Sources 2009, 191, 591.  

    42. [42]

      (42) Kovacheva, D.; Gadjov, H.; Petrov, K.; Mandal, S.; Lazarraga, M. G.; Pascual, L.; Amarilla, J. M.; Rojas, R. M.; Herrero, P.; Rojo, J. M. Journal of Materials Chemistry 2002, 12, 1184.  

    43. [43]

      (43) Zhang, J. H.; Liu, J. B.;Wang, S. Z.; Zhan, P.;Wang, Z. L.; Ming, N. B. Adv. Funct. Mater. 2004, 14, 1089.  

    44. [44]

      (44) Fu, Y. S.; Chen, L. J.; Liao, J. D.; Chuang, Y. J.; Hsu, K. C.; Chiang, Y. F. J. Appl. Polym. Sci. 2011, 121, 154.  

    45. [45]

      (45) Kanamura, K.; Rho, Y. H. J. Electroanal. Chem. 2003, 559, 69.  

    46. [46]

      (46) Kanamura, K.; Rho, Y. H. J. Solid State Chem. 2004, 177, 2094.  

    47. [47]

      (47) Kanamura, K.; Rho, Y. H. Journal of Power Sources 2006, 158, 1436.  

    48. [48]

      (48) Kanamura, K.; Rho, Y. H.; Umegaki, T. Chem. Lett. 2001, 1322.

    49. [49]

      (49) Dai, K. H.; Mao, J.; Zhai, Y. C. Acta Phys. -Chim. Sin. 2010, 26, 2130. [代克化, 毛景, 翟玉春. 物理化学学报, 2010, 26, 2130.]

    50. [50]

      (50) Hirose, S.; Kodera, T.; Ogihara, T. Journal of Alloys and Compounds 2010, 506, 883.  

    51. [51]

      (51) Peng, Z. D.; Jiang, Q. L.; Du, K.;Wang,W. G.; Hu, G. R.; Liu, Y. X. Journal of Alloys and Compounds 2010, 493, 640.  

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    7. [7]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    8. [8]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    9. [9]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    11. [11]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    13. [13]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    14. [14]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    15. [15]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    19. [19]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    20. [20]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

Metrics
  • PDF Downloads(1013)
  • Abstract views(2745)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return