Citation: KONG Xiang-Lei. Effects of Mode-Mode Coupling on Vibrational Frequency Blue Shift in Improper H-Bonded Systems[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 303-308. doi: 10.3866/PKU.WHXB201112013 shu

Effects of Mode-Mode Coupling on Vibrational Frequency Blue Shift in Improper H-Bonded Systems

  • Received Date: 31 August 2011
    Available Online: 1 December 2011

    Fund Project: 国家自然科学基金(21052001)资助项目 (21052001)

  • Bond shortening of NH/CH due to improper hydrogen bonding is always thought to be accompanied by a blue shift in its corresponding frequency. However, results here show that owing to anharmonic effects, especially the contribution of mode-mode coupling, the blue shift could be greatly decreased. The strong interaction may even, in some cases, cause the previously predicted blue-shifting frequencies by harmonic methods to be red-shifted instead in the gas phase. Though these results need to be clearly verified by further infrared (IR) spectrum experiments in the gas phase for the selected systems, comparisons with previous IR results obtained from matrix isolation experiments strongly support the results of the calculations.
  • 加载中
    1. [1]

      (1) (a) Hobza, P.; Spirko, V.; Selzle, H. L.; Schlag, E.W. J. Phys. Chem. A 1998, 102, 2051. (b) Gu, Y.; Kar, T.; Scheiner, S. J. Am. Chem. Soc. 1999, 121, 9411. (c) Hobza, P.; Havlas, Z. Chem. Rev. 2000, 100, 4253. (d) Zierkiewicz,W.; Jurecka, P.; Hobza, P. ChemPhysChem 2005, 6, 609. (e) Li, X.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639. (f) Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620.

    2. [2]

      (2) (a) Liu, L.; Liu,W.; Li, H.; Liu, J.; Yang, Y. J. Phys. Chem. A 2006, 110, 11760. (b) Solimannejad, M.; Massahi, S.; Alkorta, I. Chem. Phys. 2009, 362, 1. (c) Yang, Y.; Liu, Y. Int. J. Quantum Chem. 2010, 110, 1264. (d) Trung, N. T.; Hue, T. T.; Nguyen, M. T. J. Phys. Chem. A 2009, 113, 3245. (e) Liu, Y.; Liu,W. Q.; Li, H. Y.; Yang, Y.; Cheng, S. Chin. J. Chem. 2007, 25, 44. (f) Solimannejad, M.; Scheiner, S. J. Phys. Chem. A 2008, 112, 4120. (g) Shirhatti, P. R.;Wategaonkar, S. Phys. Chem. Chem. Phys. 2010, 12, 6650.  

    3. [3]

      (3) (a) Nie, J.; Li, A. Y.; Yan, X. H. Acta Phys. -Chim. Sin. 2008, 24, 2000. [倪杰, 黎安勇, 闫秀花. 物理化学学报, 2008, 24, 2000.] (b) Li, A. Y. Sci. China Ser. B-Chem. 2008, 38, 557. [黎安勇. 中国科学B辑: 化学, 2008, 38, 557.] (c)Wang, S.W.; Li, A. Y.; Tan, H.W. Chem. J. Chin. Univ. 2007, 28, 1962. [王素纹, 黎安勇, 谭宏伟. 高等学校化学学报, 2007, 28, 1962.]

    4. [4]

      (4) Donoso-Tauda, O.; Jaque, P.; Santos, J. C. Phys. Chem. Chem. Phys. 2011, 13, 1552.

    5. [5]

      (5) Torrent-Sucarrat, M.; Anglada, J. M.; Luis, J. M. Phys. Chem. Chem. Phys. 2009, 11, 6377.

    6. [6]

      (6) (a) Jung, J. O.; Gerber, R. B. J. Chem. Phys. 1996, 105, 10332. (b) Chaban, G. M.; Jung, J. O.; Gerber, R. B. J. Phys. Chem. A 2000, 104, 2772. (c) Asmis, K. R.; Pivonka, N. L.; Santambrogio, G.; Brummer, M.; Kaposta, C.; Neumark, D. M.;Woste, L. Science 2003, 299, 1375. (d) Adesokan, A. A.; Gerber, R. B. J. Phys. Chem. A 2009, 113, 1905. (e) Yagi, K.; Hirao, K.; Taketsugu, T.; Schmidt, M.W.; rdon, M. S. J. Chem. Phys. 2004, 121, 1383.  

    7. [7]

      (7) Peters, N. J. S. J. Phys. Chem. A 1998, 102, 7001.  

    8. [8]

      (8) (a) Forda, T. A.; Glasser, L. J. Mol. Struct. -Theochem 1997, 398-399, 381. (b) ng, X. L.; Zhou, Z. Y.; Zhang, H.; Liu, S. Z. J. Mol. Struct. -Theochem 2005, 718, 23.  

    9. [9]

      (9) Schmidt, M.W.; Baldridge, K. K.; Boatz, J. J.; Elbert, S. T.; rdon, M. S.; Jensen, J. J.; Koseki, S.; Matsunage, N.; Nguyen, K. A.; Su, S.;Windus, T. L.; Dupuis, M.; Mon mery, J. A. J. Comput. Chem. 1993, 19, 1347.

    10. [10]

      (10) Jacox, M. E. J. Phys. Chem. Ref. Data 1984, 13, 945.  

    11. [11]

      (11) Jacox, M. E.; Milligan, D. E. J. Mol. Spectrosc. 1973, 48, 536.  

    12. [12]

      (12) Müller, R. P.; Huber, J. R. Reviews of Chemical Intermediates 1984, 5, 423

    13. [13]

      (13) Bouwens, R. J.; Hammerschmidt, J. A.; Graeskowiak, M. M.; Stefink, T. A.; Yorba, P. M.; Polik,W. F. J. Chem. Phys. 1996, 104, 460.  

    14. [14]

      (14) (a) Khoshkhoo, H.; Nixon, E. R. Spectrochim. Acta A 1973, 29, 603. (b) Nelander, B. J. Chem. Phys. 1980, 73, 1034. (c) van der Zwet, G. P.; Allamandola, L. J.; Baas, F.; Greenberg, J. M. J. Mol. Struct. 1989, 195, 213.  

    15. [15]

      (15) (a) Jacox, M. E. J. Phys. Chem. 1984, 88, 3373. (b) Müller, R. P.; Russegger, P.; Huber, J. R. Chem. Phys. 1982, 70, 281.  

    16. [16]

      (16) Wang, G. X.; Zhao, J.;Wang, J. P. Science China Chemistry 2011, 41, 1387. [王桂秀, 赵娟, 王建平. 中国科学: 化学, 2011, 41, 1387.]

    17. [17]

      (17) (a) Kohout, F. C.; Lampe, F.W. J. Am. Chem. Soc. 1965, 87, 5795. (b) Schafirovich, V.; Lymar, S. V. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 7340.  

  • 加载中
    1. [1]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    2. [2]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    5. [5]

      Suqing Shi Anyang Li Yuan He Jianli Li Xinjun Luan . Exploration and Practice of the “Progressive” Integrated Training Mode for Innovative Chemistry Talents at Comprehensive Universities in Western China. University Chemistry, 2024, 39(6): 42-49. doi: 10.3866/PKU.DXHX202402009

    6. [6]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    7. [7]

      Liping Wang Huanfeng Wang Yuling Li Lingchuan Li Xiaojing Li Huifeng Chen Bowen Ji Linna Wang . Exploring the Full Process of a Research-Based Teaching Model through the Deep Integration of Theory and Practice: A Case Study of the Self-Designed Scheme for “Determination of Total Acid Content in White Vinegar”. University Chemistry, 2025, 40(5): 244-251. doi: 10.12461/PKU.DXHX202406035

    8. [8]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    11. [11]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    12. [12]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    13. [13]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    14. [14]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    17. [17]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    20. [20]

      Chengxia Tong Yajie Li Jin Yan Xuejian Qu Shigang Wei Yong Fan Zhiguang Song Yupeng Guo . The Construction and Practice of a Comprehensive and Three-Dimensional Practical Education Model. University Chemistry, 2024, 39(7): 49-55. doi: 10.12461/PKU.DXHX202404155

Metrics
  • PDF Downloads(774)
  • Abstract views(2394)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return