Citation: LI Yong-Chao, LI Tie-Long, WANG Xue, JIN Zhao-Hui. One-Step Synthesis of Fe@SiO2 and Its Application in Cr(VI) Removal[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2711-2718. doi: 10.3866/PKU.WHXB20111134 shu

One-Step Synthesis of Fe@SiO2 and Its Application in Cr(VI) Removal

  • Received Date: 17 June 2011
    Available Online: 21 September 2011

    Fund Project: 国家自然科学基金(40971254, 20907023, 41173102) (40971254, 20907023, 41173102)

  • Without using aqueous ammonia and a surface modifier, a facile one-step method was developed to fabricate Fe nanoparticles coated with a SiO2 shell (Fe@SiO2) by a modified Stöber method combined with an aqueous reduction method. The Fe@SiO2 was prepared by directly adding potassium borohydride to a mixed solution of tetraethylorthosilicate (TEOS) and anhydrous ferric chloride. The structure and morphology of the as-synthesized powders were investigated by X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy, Fourier-transform infrared (FTIR) spectrometry and X-ray photoelectron spectroscopy (XPS). The feasibility of using the prepared Fe@SiO2 for the reductive immobilization of Cr(VI) in water was studied. The influence of TEOS addition on Cr(VI) removal by Fe@SiO2 was investigated. The results showed that the prepared Fe@SiO2 had a distinct core-shell structure. One or two Fe nanoparticles (20-30 nm in diameter) were homogeneously coated by a porous SiO2 shell. With an increase in the amount of added TEOS the Fe nanoparticles had better dispersion and the thickness of the SiO2 coating increased gradually. Compared with uncoated Fe nanoparticles, Cr(VI) removal by Fe@SiO2 increased greatly. At a TEOS dosage of 0.1 mL the removal ability of the prepared Fe@SiO2 was the highest. The highest removal ability of Fe@SiO2 was 466.67 mg·g-1 and it was only 76.35 mg·g-1 for uncoated Fe nanoparticles.
  • 加载中
    1. [1]

      (1) Palmer, C. D.;Wittbrodt, P. R. Environ. Health Persp. 1991, 92, 25.  

    2. [2]

      (2) Legrand, L.; El Figuigui, A.; Mercier, F.; Chausse, A. Environ. Sci. Technol. 2004, 38, 4587.  

    3. [3]

      (3) Ponder, S. M.; Darab, J. G.; Mallouk, T. E. Environ. Sci. Technol. 2000, 34, 2564.  

    4. [4]

      (4) He, F.; Zhao, D. Environ. Sci. Technol. 2005, 39, 3314.  

    5. [5]

      (5) Raychoudhury, T.; Naja, G.; Ghoshal, S. J. Contam. Hydrol. 2010, 118, 143.  

    6. [6]

      (6) He, F.; Zhao, D. Environ. Sci. Technol. 2007, 41, 6216.  

    7. [7]

      (7) Li, S. J.; Li, T. L.; Xiu, Z. M.; Jin, Z. H. J. Environ. Monit. 2010, 12, 1153.  

    8. [8]

      (8) Wang, Y. F.; Biradar, A. V.; Duncan, C.T.; Asefa, T. J. Mater. Chem. 2010, 20, 7834.  

    9. [9]

      (9) Zhang, L.; Hu, B.; Chen, H.; Li, X. J.; Li, R. X. Acta Phys. -Chim. Sin. 2010, 26, 2422. [张磊, 胡博, 陈华, 李贤均, 李瑞祥. 物理化学学报, 2010, 26, 2422.]

    10. [10]

      (10) Kim, H. J.; Ahn, J. E.; Haam, S.; Shul, Y. G.; Song, S. Y.; Tatsumi, T. J. Mater. Chem. 2006, 16, 1617.  

    11. [11]

      (11) Wang, G. H.; Harrison, A. J. Colloid Interface Sci. 1999, 217, 203.  

    12. [12]

      (12) Li, Y. S.; Church, J. S.;Woodhead, A. L.; Moussa, F. Spectrochim . Actat A 2010, 76, 484.  

    13. [13]

      (13) Zheng, T. H.; Zhan, J. J.; He, J. B.; Day, C.; Lu, Y. F.; McPherson, G. L.; Piringer, G.; John, V. T. Environ. Sci. Technol. 2008, 42, 4494.  

    14. [14]

      (14) Yi, D. K.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2006, 18, 2459.  

    15. [15]

      (15) Yang, P.; Ando, M.; Murase, N. Langmuir 2011, 27, 895.  

    16. [16]

      (16) EPA China. Analysis Methods forWater andWastewater, 4th ed.; Chinese Environmental Science Press: Beijing, 2002; pp 346-349. [国家环保局, 水和废水检测分析方法. 第四版. 北京: 中国环境出版社, 2002: 346-349.]

    17. [17]

      (17) Saleh, N.; Sirk, K.; Liu, Y.; Phenrat, T.; Dufour, B.; Matyjaszewski, K.; Tilton, R. D.; Lowry, G.V. Environ. Eng. Sci. 2007, 24, 45.  

    18. [18]

      (18) Zhang, L.; Manthiram, A. Appl. Phys. Lett. 1997, 70, 2469.  

    19. [19]

      (19) Yuan, M. L.; Tao, J. H.; Yan, G. J.; Tan, M. Y.; Qiu, G. Z. Trans. Nonferrous Met. Soc. China 2010, 20, 632.  

    20. [20]

      (20) Yang, T. I.; Brown, R. N. C.; Kempel, L. C.; Kofinas, P. Nanotechnology 2011, 22, 105601.  

    21. [21]

      (21) Zhang, Y.; Chen,W. Z.; Zhang,W. G.; Acta Chim. Sin. 2003, 61, 141. [章仪, 陈文哲, 章文汞. 化学学报, 2003, 61, 141.]

    22. [22]

      (22) Bruni, S.; Cariat, F.; Casu, M.; Lai, A.; Musinu, A.; Piccaluga, G.; Solinas, S. Nanostruct. Mater. 1999, 11, 573.  

    23. [23]

      (23) Cheng, J.; Ni, X. M.; Zheng, H. G.; Li, B. B.; Zhang, X. J.; Zhang, D. E. Mater. Res. Bull. 2006, 41, 1424.  

    24. [24]

      (24) Zhao,W. Y.; Zhang, Q. J.; Guan, J. G.; Tang, X. F. Bull. Chin. Cera. Soci. 2007, 26, 38. [赵文俞, 张清杰, 官建国, 唐新峰. 硅酸盐通报, 2007, 26, 38.]

    25. [25]

      (25) Powell, R. M.; Puls, R.W.; Hightower, S. K.; Sabatini, D. A. Environ. Sci. Technol. 1995, 29, 1913.  

    26. [26]

      (26) Liu, H. F.; Kong, F. J.; Rao, Y. Y.; Dong, J.; Qian,W. P. Acta Chim. Sin. 2010, 68, 865. [刘浩富, 孔凡娟, 饶艳英, 董健, 钱卫平. 化学学报, 2010, 68, 865.]

    27. [27]

      (27) Xu, Y. H.; Zhao, D. Y. Water Res. 2007, 41, 2101.  

    28. [28]

      (28) Li, X. Q.; Cao, J.; Zhang,W. X. Ind. Eng. Chem. Res. 2008, 47, 2131.  

    29. [29]

      (29) Fendorf, S. E.; Lamble, G. M.; Stapleton, M. G.; Kelley, M. J.; Sparks, D. L. Environ. Sci. Technol. 1994, 28, 284.  

    30. [30]

      (30) Oh, Y. J.; Song, H.; Shin,W. S.; Choi, S. J.; Kim, Y. H. Chemosphere 2007, 66, 858.  

  • 加载中
    1. [1]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    6. [6]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    7. [7]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    12. [12]

      Quanquan LiChenzhu ZhaoShanshan JiaQiang ChenXusheng LiMengyao SheHua LiuPing LiuYaoyu WangJianli Li . Design and fabrication of CuI/CuII-MOF-incorporated hydrogel photocatalysts for synergy removal of Cr(VI) and congo red. Chinese Chemical Letters, 2025, 36(5): 109936-. doi: 10.1016/j.cclet.2024.109936

    13. [13]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    14. [14]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    15. [15]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    16. [16]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    17. [17]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    18. [18]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    19. [19]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

Metrics
  • PDF Downloads(1108)
  • Abstract views(2474)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return