Citation: LIU Li, TIAN Fang-Hua, WANG Xian-You, ZHOU Meng. Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2600-2604. doi: 10.3866/PKU.WHXB20111126 shu

Electrochemical Behavior of LiV3O8 in Aqueous Li2SO4 Solution

  • Received Date: 13 July 2011
    Available Online: 15 September 2011

    Fund Project: 国家自然科学基金(20871101) (20871101) 湖南省教育厅项目(10C1250) (10C1250) 湖南省自然科学基金(11JJ4038) (11JJ4038)湖南省科技厅项目(2010RS4027)资助 (2010RS4027)

  • Nanostructured LiV3O8 powder was synthesized by a low-temperature solid-state method. Scanning election microscopy (SEM) and transmission electron microscopy (TEM) show that the as-prepared material is composed of nanostructured particles. X-ray diffraction (XRD) measurements indicate that the as-prepared material has a monoclinic structure with a space group of P21/m. The electrochemical properties of the LiV3O8 electrodes in 1 mol·L-1 Li2SO4, 2 mol·L-1 Li2SO4, and saturated Li2SO4 aqueous electrolytes were studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in this work. The results show that the LiV3O8 electrode in the saturated Li2SO4 electrolyte has the best electrochemical properties. An aqueous rechargeable lithium battery (ARLB) containing a LiV3O8 anode, a LiNi1/3Co1/3Mn1/3O2 cathode, and a saturated Li2SO4 electrolyte was fabricated. The battery delivered an initial capacity of 95.2 mAh·g-1 and retained a capacity of 37.0 mAh·g-1 after 100 cycles at a charge-discharge rate of 0.5C (1C=300 mA·g-1).
  • 加载中
    1. [1]

      (1) Liu, X. H.; Saito, T.; Doi, T.; Okada, S.; Yamaki, J. J. Power Sources 2009, 189, 706.  

    2. [2]

      (2) Zhang, S.; Li, Y.;Wu, C.; Zheng, F.; Xie, Y. J. Phys. Chem. C 2009, 113, 15058.  

    3. [3]

      (3) Li,W.; Dahn, J. R.;Wainwright, D. Science 1994, 264, 1115.  

    4. [4]

      (4) James, G. Science 1994, 264, 1084.  

    5. [5]

      (5) Luo, J. Y.; Xia, Y. Y. Adv. Funct. Mater. 2007, 17, 3877.  

    6. [6]

      (6) Kohler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46, 59.  

    7. [7]

      (7) Wang, G.; Fu, L.; Zhao, N.; Yang, L.;Wu, Y.;Wu, H. Angew. Chem. Int. Edit. 2007, 46, 295.  

    8. [8]

      (8) Ruffo, R.;Wessells, C.; Huggins, R. A.; Cui, Y. Electrochem. Commun. 2009, 11, 247.  

    9. [9]

      (9) Zeng, X. L.; Huang, Y. Y.; Luo, F. L.; He, Y. B.; Tong, D. G. J. Sol-Gel Sci. Technol. 2010, 54, 139.  

    10. [10]

      (10) Zhao, M. S.; Song, X. P.;Wang, F.; Dai,W. M.; Lu, X. G. Electrochim. Acta 2011, 56, 5673.  

    11. [11]

      (11) Wang, G. J.; Zhang, H. P.; Fu, L. J.;Wang, B.;Wu, Y. P. Electrochem. Commun. 2007, 9, 1873.  

    12. [12]

      (12) Wang, Y.; Luo, J.;Wang, C.; Xia, Y. J. Electrochem. Soc. 2006, 153, A1425.

    13. [13]

      (13) Liu, L.; Jiao, L.; Sun, J.; Zhao, M.; Zhang, Y.; Yuan, H.;Wang, Y. Solid State Ionics 2008, 178, 1756.  

    14. [14]

      (14) Caballero, A.; Morales, J.; Vargas, O. A. J. Power Sources 2010, 195, 4318.  

    15. [15]

      (15) Heli, H.; Yadegari, H.; Jabbari, A. Materials Chemistry and Physics 2011, 126, 477.

    16. [16]

      (16) Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyam, Y.; Abe, T.; Ogumi, Z. Electrochim. Acta 2009, 54, 3428.  

    17. [17]

      (17) Wang, H.; Huang, K.; Zeng, Y.; Yang, S.; Chen, L. Electrochim. Acta 2007, 52, 3280.  

    18. [18]

      (18) Wang, H.; Zeng, Y.; Huang, K.; Liu, S.; Chen, L. Electrochim. Acta 2007, 52, 5102.  

    19. [19]

      (19) Wang, G. J.; Qu, Q. T.;Wang, B.; Shi, Y.; Tian, S.;Wu, Y. P.; Holze, R. J. Power Sources 2009, 189, 503.  

    20. [20]

      (20) Wang, G. J.; Zhao, N. H.; Yang, L. C.;Wu, Y. P.;Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52, 4911.  

    21. [21]

      (21) Tang,W.; Liu, L. L.; Tian, S.; Li, L.; Yue, Y. B.;Wu, Y. P.; Guan, S. Y.; Zhu, K. Electrochem. Commun. 2010, 12, 1524.  

    22. [22]

      (22) Luo, J. Y.; Cui,W. J.; He, P.; Xia, Y. Y. Nature Chemistry 2010, 2, 760.  

    23. [23]

      (23) Wang, G. J.; Fu, L. J.;Wang, B.; Zhao, N. H.;Wu, Y. P.; Holze, R. J. Appl. Electrochem. 2008, 38, 579.  

    24. [24]

      (24) Wang, G. J.; Qu, Q. T.;Wang, B.; Shi, Y.; Tian, S.;Wu, Y. P.; Holze, R. Electrochim. Acta 2009, 54, 1199.  

    25. [25]

      (25) Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321.  

    26. [26]

      (26) Zhao, Y.;Wang, Y. Y.; Lai, Q. Y. L.; Chen, M.; Hao, Y. J.; Ji, X. Y. Synthetic Metals 2009, 159, 336.

  • 加载中
    1. [1]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    2. [2]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    3. [3]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    4. [4]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    11. [11]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    12. [12]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    14. [14]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    19. [19]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    20. [20]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

Metrics
  • PDF Downloads(1209)
  • Abstract views(2270)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return