Citation: WEI Yi, WANG Li-Juan, YAN Ji, SHA Ou, TANG Zhi-Yuan, MA Li. Calcination Temperature Effects on the Electrochemical Performance of Li2MnSiO4/C Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2587-2592. doi: 10.3866/PKU.WHXB20111124 shu

Calcination Temperature Effects on the Electrochemical Performance of Li2MnSiO4/C Cathode Material for Lithium Ion Batteries

  • Received Date: 4 July 2011
    Available Online: 13 September 2011

    Fund Project: 国家自然科学基金(20973124)资助项目 (20973124)

  • As a new potential cathode material for lithium ion batteries, Li2MnSiO4/C was synthesized by a solution method. The thermal behavior of the precursor for Li2MnSiO4/C was measured by thermogravimetric (TG) analysis and the range of calcination temperatures from 600 to 800°C was determined. X-ray powder diffraction (XRD) patterns indicated that all the Li2MnSiO4/C samples crystallized in an orthorhombic structure with space group Pmn21. The morphology and particle size of the samples were also characterized by scanning electron microscopy (SEM). The effects of calcination temperature on the electrochemical performance of Li2MnSiO4/C were studied using galvanostatic charge-discharge measurements at various current densities. The results showed that the sample prepared at 700°C exhibited a much higher coulombic efficiency and better cyclic performance than the other samples.
  • 加载中
    1. [1]

      (1) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1188.  

    2. [2]

      (2) Padhi, A. K.; Nanjundaswamy, K. S.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 1609.  

    3. [3]

      (3) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; odenough, J. B. J. Electrochem. Soc. 1997, 144, 2581.  

    4. [4]

      (4) Arroyo-de Dompablo, M. E.; Armand, M.; Tarascon, J. M.; Amador, U. Electrochem. Commun. 2006, 8, 1292.  

    5. [5]

      (5) Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6, 1144.  

    6. [6]

      (6) Nytén, A.; Abouimrane, A.; Armand, M. Electrochem. Commun. 2005, 7, 156.  

    7. [7]

      (7) Nytén, A.; Kamali, S.; Haggstrom, L.; Gustafsson, T.; Thomas, J. O. J. Mater. Chem. 2006, 16, 2266.  

    8. [8]

      (8) Islam, M. S; Dominko, R.; Masquelier, C.; Sirisopanaporn, C.; Armstrong, A. R.; Bruce, P. G. J. Mater. Chem. 2011, 21, 9811.  

    9. [9]

      (9) Zaghib, K.; Ait Salah, A.; Ravet, N.; Maguger, A.; Gendron, F.; Julien, C. M. J. Power Sources 2006, 160, 1381.  

    10. [10]

      (10) Dominko, R.; Conte, D. E.; Hanzel, D.; Gaberscek, M.; Jamnik, J. J. Power Sources 2008, 178, 842.  

    11. [11]

      (11) Yang, Y.; Fang, H. S.; L, L. P.; Yan, G. F.; Li, G. S. Rare Metals and Engineering 2008, 6, 1085.

    12. [12]

      (12) Belharouak, I.; Abouimrane, A.; Amine, K. J. Phys. Chem. C 2009, 113, 20733.  

    13. [13]

      (13) Liu,W. G.; Xu, Y. H.; Yang, R. J. Alloy. Compd. 2009, 480, L1.

    14. [14]

      (14) Dominko, R.; Bele, M.; Gaberscek, M.; Meden, A.; Remskar, M. J. Electrochem. Commun. 2006, 8, 217.  

    15. [15]

      (15) Dominko, R.; Bele, M.; Kokalj, A.; Gaberscek, M.; Jamnik, J. J. Power Sources 2007, 174, 457.  

    16. [16]

      (16) Dominko, R. J. Power Sources 2008, 184, 462.  

    17. [17]

      (17) Aravindan, V.; Ravi, S.; Kim,W. S.; Lee, S. Y.; Lee, Y. S. J. Colloid Interface Sci. 2011, 355, 472.  

    18. [18]

      (18) Liu,W. G.; Xu, Y. H.; Yang, R. Rare Metals 2010, 29, 511.  

    19. [19]

      (19) Guo, H. J.; Xiang, K. X.; Cao, X.; Li, X. H.;Wang, Z. X.; Li, L. M. Trans. Nonferrous Met. Soc. China 2009, 19, 169.

    20. [20]

      (20) Kam, K. C.; Gustafsson, T.; Thomas, J. O. Solid State Ionics 2011, 192, 356.  

    21. [21]

      (21) Li, L. M.; Guo, H. J.; Li, X. H.;Wang, Z. X.; Peng,W. J.; Xiang, K. X.; Cao, X. J. Power Sources 2009, 189, 45.  

    22. [22]

      (22) Ohzuku, T.; Kitagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137, 769.  

    23. [23]

      (23) Jang, D. H.; Shin, Y. J.; Oh, S. M. J. Electrochem. Soc. 1996, 143, 2204.  

    24. [24]

      (24) Muraliganth, T.; Stroukoff, K. R.; Manthiram, A. Chem. Mater. 2010, 22, 5754.  

    25. [25]

      (25) Li, Y. X.; ng, Z. L.; Yang, Y. J. Power Sources 2007, 174, 528.  

    26. [26]

      (26) Kokalj, A.; Dominko, R.; Mali, G.; Meden, A.; Gaberscek, M.; Jamnik, J. Chem. Mater. 2007, 19, 3633.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    4. [4]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    9. [9]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    13. [13]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    20. [20]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

Metrics
  • PDF Downloads(986)
  • Abstract views(2665)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return