Citation: WANG Fang, WANG Cai-Hong, LIU Guo-Xia. Preferential Oxidation of CO over Photoreduced Pt/TiO2 Catalysts in H2-Rich Stream[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 445-449. doi: 10.3866/PKU.WHXB201111244 shu

Preferential Oxidation of CO over Photoreduced Pt/TiO2 Catalysts in H2-Rich Stream

  • Received Date: 11 August 2011
    Available Online: 24 November 2011

    Fund Project: 滨州学院科研基金(2010Y06)资助项目 (2010Y06)

  • The optimum reaction parameters for CO oxidation in the presence and absence of H2 have been investigated by photoreduction method to enhance the catalytic activity and selectivity of CO2 for CO preferential oxidation (PROX) in H2-rich stream in detail. X-ray photoelectron spectroscoopy (XPS) results showed that part oxygen vacancies produced on the surface of photoreduced catalysts, which maybe the activity site for the chemisorbed H. Therefore, a possible bi-function reaction mechanism for CO preferential oxidation over the photoreduced Pt/TiO2 catalyst has been proposed.
  • 加载中
    1. [1]

      (1) Du,W. P.; Li, Z.; Leng,W. H. Acta Phys. Chim. Sin. 2009, 25, 1530. [杜卫平, 李臻, 冷文华, 许宜铭. 物理化学学报, 2009, 25, 1530. ]

    2. [2]

      (2) Liu, D.; Xu, Y. M. Acta Phys. Chim. Sin. 2008, 24, 1584. [刘鼎, 许宜铭. 物理化学学报, 2008, 24, 1584.]  

    3. [3]

      (3) Wang, F.; Lu, G. X. Catal. Lett. 2007, 115, 46

    4. [4]

      (4) Wang, F.; Lu, G. X. Catal. Lett. 2010, 134, 72.  

    5. [5]

      (5) Oh, S. H.; Sinkevitch, R. M. J. Catal. 1993, 142, 254.  

    6. [6]

      (6) Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. J. Catal. 1997, 171, 93.  

    7. [7]

      (7) zkara, S. Ö.; Aksoylu, A. E. Appl. Catal. A-Gen. 2003, 251, 75.  

    8. [8]

      (8) Geng, D. S.; Chen, L.; Lu, G. X. J. Mol. Catal. A 2007, 265, 42.  

    9. [9]

      (9) Tang, Z. C.; Geng, D. S.; Lu, G. X. Thin Solid Films 2006, 497, 309.  

    10. [10]

      (10) Wang, F.; Lu, G. X. J. Power Sources 2008, 181, 120.  

    11. [11]

      (11) Wang, . F; Lu, G. X. Int. J Hydrogen Energy 2010, 35, 7253.  

    12. [12]

      (12) Wang, F.; Lu, G. X. J. Phys. Chem. C 2009, 113, 4161

    13. [13]

      (13) Wang, F.; Lu, G. X. J. Phys. Chem. C 2009, 113, 17070.  

    14. [14]

      (14) Wang, F.; Lu, G. X. Chin. J. Catal. 2007, 28, 27.

    15. [15]

      (15) Zhang, M.; Jin, Z. S.; Zhang, Z. J.; Dang, H. X. Appl. Surf. Sci. 2005, 250, 29.  

    16. [16]

      (16) Zhang, M.; Jin, Z. S.; Zhang, Z. J.; Dang, H. X. J. Mol. Catal. A- Chem. 2005, 225, 59.  

    17. [17]

      (17) Zhang, M.; Jin, Z. S.; Chen, G.; Du, Z. L. Chin. J. Catal. 2005, 26, 508.

    18. [18]

      (18) Nishiyama, N.; Ichioka, K.; Park, D. H.; Egashira, Y.; Ueyama, K.; ra, L.; Zhu,W. D.; Kapteijn, F.; Moulijn, J. Ind. Eng. Chem. Res. 2004, 43, 1211.

    19. [19]

      (19) Kim, K. S.;Winorgrad, N.; Davis, R. E. J. Am. Chem. Soc. 1971, 93, 6296.  

    20. [20]

      (20) Bornsten, L. In Zahlenwerte und Funktionen aus Naturwissenschaft und Technik; Springer: Berlin, 1982.

    21. [21]

      (21) Robert, G.; Peter, M.; Michael, B. Catal. Lett. 2004, 98, 129.  

    22. [22]

      (22) Yang, J. C.; Kim, Y. C.; Shul, Y. G.; Shin C. H.; Lee, T. K. Appl. Surf. Sci. 1997, 121, 525.  

    23. [23]

      (23) Lopez, N.; Janssens, T. V.W.; Clausen, B. S; Xu, Y.; Mavrikakis, M.; Bligaard, T; N?skov, J. K. J. Catal. 2004, 223, 232.  

    24. [24]

      (24) Giordano, L.; niakowski, J.; Pacchioni, G. Phys. Rev. B 2001, 64, 075417.  

    25. [25]

      (25) Molina, L. M.; Hammer, B. Phys. Rev. Lett. 2003, 90, 206102.  

    26. [26]

      (26) Dai,W. X.; Chen, X.;Wang, X. X.; Liu, P.; Li, D. Zh.; Li, G. S.; Fu, X. Z. Phys. Chem. Chem. Phys. 2008, 10, 3256.

  • 加载中
    1. [1]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    4. [4]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    14. [14]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(830)
  • Abstract views(2105)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return