Citation:
WANG Li-Geng, YUAN Ting, LI Yuan, SHI Wei, NI Zhe-Ming. Interlayer Reaction of Thiosulfate in a Confined Region of Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica,
;2012, 28(02): 273-282.
doi:
10.3866/PKU.WHXB201111243
-
The thiosulfate anion (S2O32-) was intercalated into a ZnAl layered double hydroxide (LDH), and its oxidation reaction with hexacyanoferrate(III) (Fe(CN)63-) in the confined region between the layers of LDH has been discussed. Based measurements of the intermediate state and final product using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, the oxidation product tetrathionate (S4O62-) dissolved in solution, while the reduction product hexacyanoferrate (II) existed in the interlayer of the LDH. Furthermore, the kinetics of this reaction were investigated in batch mode. The influences of the initial Fe(CN)63- concentration, ZnAl-S2O3 LDH quantity, and reaction temperature on the oxidation reaction were studied. The reaction follows a diffusion-controlled process represented by Crank-Ginstling and Brounstein model with the apparent activation energy of 24.6 kJ·mol-1, which was about 13.7 kJ·mol-1 less than that of the solution reaction under the same conditions. The influence of water content on interlayer spacing was simulated by molecular dynamics. The simulation result shows that the size of this microreactor can be regulated in a certain orientation in the solution environment. From the experimental results and theoretical calculation, we propose a mechanism for the interlayer reaction. This layered material can be used as a novel nano-reactor to regulate the rate of chemical reactions.
-
-
- [1]
-
[2]
(2) Yuan Q.;Wei, M.; Evan, D.; Duan, X. J. Phys. Chem. B 2004, 108, 12381.
- [3]
-
[4]
(4) Yan, D.; Lu, J.;Wei, M.; Li, H.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. J. Phys. Chem. A 2008, 33, 7671.
-
[5]
(5) Yang,W. S.; Kim, Y.; Liu, P. K. T.; Sahimi, M.; Tsotsis, T. T. Chem. Eng. Sci. 2002, 57, 2954
-
[6]
(6) Hou, X.Q.; Kalinichev, A. G.; Krikpatrick, R. J. Chem. Mater. 2002, 14, 2078.
-
[7]
(7) Xu, Q.; Ni, Z. M.; Yao, P.; Li Y. J. Mol. Struct. 2010, 977, 165.
-
[8]
(8) Li, Y.; Ni, Z. M.; Xu ,Q.; Yao, P.; Liu, X. M.;Wang, Q. Q. J. Chin. Ceramic Soc. 2011, 39, 63. [李远, 倪哲明, 胥倩, 姚萍, 刘晓明, 王巧巧. 硅酸盐学报, 2011, 39, 63.]
-
[9]
(9) Das, D. P.; Das, J.; Parida, K. J. Colloid Interface Sci. 2003, 261, 213.
-
[10]
(10) Pérez-Bemal, M. E.; Ruano-Casero, R.; Pinnavaia, T. J. Catal. Lett. 1991, 11, 55.
-
[11]
(11) Choudary, B. M.; Kantam, M. L.; Kavita, B.; Reddy, C. V.; Figueras, F. Tetrahedron 2000, 56, 9357.
-
[12]
(12) Zubitur, M.; Gómez, M. A.; Cortázar, M. Poly. Degrad. Stab. 2009, 5, 804.
-
[13]
(13) Lee, K.; Nam, J.H.; Lee, J.H.; Lee, Y.; Cho, S.M.; Jung, C.H.; Choi, H.G.; Chang, Y.Y.; Kwon, Y. U.; Nam, J. D. Electrochem. Commun. 2005, 7, 113.
-
[14]
(14) Ji, X. M.; Li, M. L.; Zhao, Y. X.;Wei, Y. B.; Xu, Q. H. Solid State Sci. 2009, 6, 1170.
-
[15]
(15) Choi, G.; Lee, J.H.; Oh, Y. J.; Choy, Y. B.; Park, M. C.; Chang, H. C.; Choy, J. H. Int. J. Pharm. 2010, 402, 117.
-
[16]
(16) Arulraj, J.; Rajamathi, J. T.; Prabhu, K. R.; Rajamathi, M. Solid State Sci. 2007, 9, 812..
- [17]
-
[18]
(18) Freund, P. L.; Spiro, M. J. Phys. Chem. 1985, 7, 1074.
-
[19]
(19) Freund, P. L.; Spiro, M. J. Chem. Soc. Faraday Trans. 1986, 82, 2277.
-
[20]
(20) Li, Y.; Petroski, J.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 10956.
-
[21]
(21) Li, D.; Sun, C. Y.; Huang, Y. J.; Li, J. H.; Chen, S.W. Sci. China, Ser. B-Chem. 2005, 35, 33. [李迪, 孙春燕, 黄云杰, 李景虹, 陈少伟. 中国科学B辑: 化学, 2005, 35, 33.]
-
[22]
(22) Bonnet, S.; Forano, C.; de Roy, A.; Besse, J. P.; Maillard, P. Maomenteau, M. Chem. Mater. 1996, 8, 1962.
-
[23]
(23) Meng,W.; Li, F.; Evans, D. G.; Duan, X.; Mater. Res. Bull. 2004, 39, 1185.
-
[24]
(24) Kloprogge, J. T.;Weier, M.; Crespo, I.; Ulibarri, M. A.; Barriga, C.; Rives, V.; Martens,W. N.; Frost, R. L. J. Solid State Chem. 2004, 177, 1382.
- [25]
-
[26]
(26) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordinatio Compound; Chemical Industry Press: Beijing, 1999; pp 187-188; translated by Huang, D. R.,Wang, R. Q. [Nakamoto, K. 无机和配位化合物红外和拉曼光谱.黄德如, 王仁庆译. 北京: 化学工业出版社, 1999: 187-188. ]
-
[27]
(27) Fernández, J. M.; Ulibarri, M. A. ; Labajos, F.; Rives, V. J. Mater. Chem. 1998, 8, 2507.
-
[28]
(28) Yao, K.; Tanaguchi, M.; Nakata, M.; Shimazu, K.; Takahashi, M.; Yamagishi, A. J. Electroanal. Chem. 1998, 457, 119.
-
[29]
(29) Dickinson, C. F.; Heal, G. R. Thermochim. Acta 1999, 340, 89.
-
[30]
(30) Markus, H.; Fugleberg, S.; Valtakari, D.; Salmi, T.; Murzin, D. Y.; Lahtinen, M. Chem. Eng. Sci. 2004, 59, 919.
-
[31]
(31) Ho, Y. S.; Ng, J. C. Y.; McKay, G. S. Purif. Methods 2000, 29, 189.
-
[32]
(32) Lazaridis, N. K.; Asouhidou, D. D. Water Res. 2003, 37, 2875.
-
[33]
(33) Lv, L.; He, J.;Wei, M.; Evans, D. G. and Zhou, Z. L. Water Res. 2007, 7, 1534.
-
[34]
(34) Howleit,W. E.;Wedzicha, B. L. Inorg. Chim. Acta 1976, 18, 133.
-
-
-
[1]
Bolin Sun , Jie Chen , Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032
-
[2]
Hongting Yan , Aili Feng , Rongxiu Zhu , Lei Liu , Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010
-
[3]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[4]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[5]
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
-
[6]
Wentao Lin , Wenfeng Wang , Yaofeng Yuan , Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095
-
[7]
Zhi Chai , Huashan Huang , Xukai Shi , Yujing Lan , Zhentao Yuan , Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046
-
[8]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[9]
Guowen Xing , Guangjian Liu , Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058
-
[10]
Ling Fan , Meili Pang , Yeyun Zhang , Yanmei Wang , Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024
-
[11]
Jiabo Huang , Quanxin Li , Zhongyan Cao , Li Dang , Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172
-
[12]
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
-
[13]
Jiageng Li , Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098
-
[14]
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074
-
[15]
Dexin Tan , Limin Liang , Baoyi Lv , Huiwen Guan , Haicheng Chen , Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048
-
[16]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[17]
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
-
[18]
Jichao XU , Ming HU , Xichang CHEN , Chunhui WANG , Leichen WANG , Lingyi ZHOU , Xing HE , Xiamin CHENG , Su JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144
-
[19]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[20]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[1]
Metrics
- PDF Downloads(1009)
- Abstract views(3485)
- HTML views(31)