Citation: ZHANG Guo-Liang, ZHAO Dan, GUO Pei-Zhi, WEI Zhong-Bin, ZHAO Xiu-Song. Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 387-392. doi: 10.3866/PKU.WHXB201111241 shu

Glycerol-Assisted Synthesis and Electrochemical Properties of Co3O4 Nanowires

  • Received Date: 11 October 2011
    Available Online: 24 November 2011

    Fund Project: 国家自然科学基金(20803037, 21143006) (20803037, 21143006) 山东省自然科学基金(ZR2009BM013) (ZR2009BM013)青岛市应用基础研究项目(11-2-4-2-(8)-jch)资助 (11-2-4-2-(8)-jch)

  • Cobalt oxide (Co3O4) nanowires were controllably synthesized using glycerol and Co(NO3)2 as reagents and adjustment of the experimental parameters. The morphology and structure of the asprepared products were characterized by a series of techniques such as X-ray podwer diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Electrochemical performance of the nanowires was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It was found that two pairs of redox peaks appeared in the CV curves of Co3O4 nanowire electrodes at low scan rates. The specific capacitance of the Co3O4 nanowire electrodes was 163 F·g-1 at a current density of 1 A·g-1, according to the galvanostatic charge-discharge measurements. Cycle stability tests showed that the specific capacitance increased over the first tens of cycles and then reduced slowly. After 1000 cycles, the capacitance retention was over 98% at 1 A·g-1 and 80% at 4 A·g-1; it then decreased obviously with further increase in cycle number. In Li-ion battery measurements, Co3O4 nanowire electrodes showed a discharge capacitance of 1124 mAh·g-1 which decreased rapidly during the cycle test. The formation mechanism and the relationship between the structure and electrochemical properties of Co3O4 nanowires were discussed based on the experimental results.
  • 加载中
    1. [1]

      (1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.  

    2. [2]

      (2) Xia, Y.; Yang, P.; Sun, Y.;Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.  

    3. [3]

      (3) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  

    4. [4]

      (4) Xiong, S. L.; Yuan, C. Z.; Zhang, X. G.; Xi, B. J.; Qian, Y. T. Chem. Eur. J. 2009, 15, 5320.  

    5. [5]

      (5) Guo, P. Z.;Wei, Z. B.;Wang, B. Y.; Ding, Y. H.; Li, H. L.; Zhang, G. L.; Zhao, X. S. Colloids Surf. A 2011, 380, 237.

    6. [6]

      (6) Chen, C. H.; Abbs, S. F.; Morey, A.; Sithambaram, S.; Xu, L. P.; Garces, H. F.; Hines,W. A.; Suib, S. L. Adv. Mater. 2008, 20, 1205.  

    7. [7]

      (7) Li, Y. G.; Tan, B.;Wu, Y. Y. J. Am. Chem. Soc. 2006, 128, 14258.  

    8. [8]

      (8) Cong, H. P.; Yu, S. H. Cryst. Growth Des. 2009, 9, 210.  

    9. [9]

      (9) Chen, Y. C.; Hu, L.;Wang, M.; Min, Y. L.; Zhang, Y. G. Colloids Surf. A 2009, 336, 64.  

    10. [10]

      (10) Li,W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005, 15, 851.  

    11. [11]

      (11) Wei, T. Y.; Chen, C. H.; Chang, K. H.; Lu, S. Y.; Hu, C. C. Chem. Mater. 2009, 21, 3228.  

    12. [12]

      (12) Zhao, Z. G.; Geng, F. X.; Bai, J. B.; Cheng, H. M. J. Phys. Chem. C 2007, 111, 3848.  

    13. [13]

      (13) Hu, L. H.; Peng, Q.; Li, Y. D. J. Am. Chem. Soc. 2008, 130, 16136.  

    14. [14]

      (14) Lou, X.W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 18, 4397.  

    15. [15]

      (15) Li, Y. G.; Tan, B.;Wu, Y. Y. Nano Lett. 2008, 8, 265.  

    16. [16]

      (16) Mekhemer, G. A. H.; Abd-Allah, H. M. M.; Mansour, S. A. A. Colloids Surf. A 1999, 160, 251.  

    17. [17]

      (17) Salabas, E. L.; Rumplecker, A.; Kleitz, F.; Radu, F.; Schueth, F. Nano Lett. 2006, 6, 2977.  

    18. [18]

      (18) Nam, K. T.; Kim, D.W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.  

    19. [19]

      (19) Li, T.; Yang, S.; Huang, L.; Gu, B.; Du, Y. Nanotechnology 2004, 15, 1479.  

    20. [20]

      (20) Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, K. H.; Dou, S. X. Electrochim. Acta 2005, 50, 3667.  

    21. [21]

      (21) Yang, L. X.; Zhu, Y. J.; Li, L.; Zhang, L.; Tong, H.;Wang,W. W.; Cheng, G. F.; Zhu, J. F. Eur. J. Inorg. Chem. 2006, 4787.

    22. [22]

      (22) Xiu, S. N.; Shahbazi, A.; Shirley, V.; Mims, M. R.;Wallace, C. W. J. Anal. Appl. Pyrol. 2010, 87, 194

    23. [23]

      (23) Yao, J. F.; Yu, L.; Zhang, L. X.;Wang, H. T. Mater. Lett. 2011, 65, 2304

    24. [24]

      (24) Li, X. H.; Zhang, D. H.; Chen, J. S. J. Am. Chem. Soc. 2006, 128, 8382.  

    25. [25]

      (25) Guo, P. Z.; Han, G. T.;Wang, B. Y.; Zhao, X. S. Acta Phys. - Chim. Sin. 2010, 26, 2557. [郭培志, 韩光亭, 王宝燕, 赵修松. 物理化学学报, 2010, 26, 2557.]

    26. [26]

      (26) Zheng, M.; Cao, J.; Liao, S.; Liu, J.; Chen, H.; Zhao, Y.; Dai, W.; Ji, G.; Cao, J.; Tao, J. J. Phys. Chem. C 2009, 113, 3887.  

    27. [27]

      (27) Gao, Y. Y.; Chen, S. L.; Cao, D. X.;Wang, G. L.; Yin, J. L. J. Power Sources 2010, 195, 1757.  

    28. [28]

      (28) Lin, C.; Ritter, J. A.; Popov, B. N. J. Electrochem. Soc. 1998, 145, 4097.  

    29. [29]

      (29) Barbero, C.; Planes, G. A.; Miras, M. C. Electrochem. Commun. 2001, 3, 113.  

    30. [30]

      (30) Xu, J.; Gao, L.; Cao, J. Y.;Wang,W. C.; Chen. Z. D. Electrochim. Acta 2010, 56, 732.  

    31. [31]

      (31) Ye, X. G.; Zhang, X. G.; Mi, H. Y.; Yang, S. D. Acta Phys. - Chim. Sin. 2008, 24, 1105. [叶向果, 张校刚, 米红宇, 杨苏东. 物理化学学报, 2008, 24, 1105.]

    32. [32]

      (32) Lou, X.W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.  

    33. [33]

      (33) Kang, J. G.; Ko, Y. D.; Park, J. G.; Kim, D.W. Nanoscale Res. Lett. 2008, 3, 390.  

    34. [34]

      (34) Binotto, G.; Larcher, D.; Prakash, A. S.; Urbina, R. H.; Hegde, M. S.; Tarascon, J. M. Chem. Mater. 2007, 19, 3032.  

    35. [35]

      (35) Yao,W. L.;Wang, J. L.; Yang, J.; Du, G. D. J. Power Sources 2008, 176, 369.  

    36. [36]

      (36) Wu, Z. S.; Ren,W. C.;Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng H. M. ACS Nano 2010, 4, 3187.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    3. [3]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    4. [4]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    5. [5]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    6. [6]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    9. [9]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    10. [10]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    13. [13]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    17. [17]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    19. [19]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    20. [20]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1152)
  • Abstract views(3274)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return