Citation: HAN Bing, CHU Yue-Ying, ZHENG An-Min, DENG Fen. Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 315-323. doi: 10.3866/PKU.WHXB201111232 shu

Adsorption Structure and Energy of Pyridine Confined inside Zeolite Pores

  • Received Date: 9 October 2011
    Available Online: 23 November 2011

    Fund Project: 国家自然科学基金(21073228, 20933009, 20921004) (21073228, 20933009, 20921004)国家重点基础研究发展规划项目(973) (2009CB918600)资助 (973) (2009CB918600)

  • The performance of different exchange-correlation functionals for the description of the interaction of pyridine with different cluster models of ZSM-5 zeolite has been assessed. Theoretical calculations show that upon increasing the cluster model from 8T to 128T, the adsorption energy of pyridine in ZSM-5 zeolite increases gradually and reaches convergence by the 72T cluster model. On the basis of the 72T cluster model, the pyridine adsorption energy calculated with different functionals is further examined. Compared to the conventional functionals (B3LYP and M06-2X), the B97D functional which takes into account the dispersion correction provides calculated results that agree well with experimental data. The present results indicate that the B97D functional is suitable for studying long-range interactions in weakly interacting systems.
  • 加载中
    1. [1]

      (1) Weitkamp, J.; Traa, Y. Catal. Today 1999, 49, 193.  

    2. [2]

      (2) Slagtern, A.; Dahl, I. M.; Jens, K. J.; Myrstad, T. App. Catal. A: Gen. 2010, 375, 213.  

    3. [3]

      (3) Luzgin, M. V.; Parmon, V. N. Angew. Chem. Int. Edit. 2008, 47, 4559.  

    4. [4]

      (4) Yu, Z.W.; Zheng, A. M.;Wang, Q.; Huang, S. J.; Deng, F.; Liu, S. B. Chin. J. Magn. Reson. 2010, 27, 485. [喻志武, 郑安民, 王强, 黃信炅, 邓风, 刘尚斌. 波谱学杂志, 2010, 27, 485.]

    5. [5]

      (5) Zheng, A. M.; Huang, S. J.; Deng, F.; Liu, S. B. Phys. Chem. Chem. Phys. 2011, 13, 14889.

    6. [6]

      (6) Zheng, A. M.; Zhang, H. L.; Chen, L.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B 2007, 111, 3085.  

    7. [7]

      (7) Coma, A. Chem. Rev. 1995, 95, 559.  

    8. [8]

      (8) Yuan, S. P.;Wang, J. G.; Li, Y.W.; Peng, S. Y. Acta Physico- Chimica Sinica 2001, 17, 811. [袁淑萍, 王建国, 李永旺, 彭少逸. 物理化学学报, 2001, 17, 811.]

    9. [9]

      (9) Yang, J.; Sun, Y. X.; Zhao, L. F.; Sun, H. Acta Physico-Chimica Sinica 2011, 27, 1823. [杨静, 孙迎新, 赵立峰, 孙淮. 物理化学学报, 2011, 27, 1823.]

    10. [10]

      (10) Yang, G.;Wang, Y.; Zhou, D. H.; Zhuang, J. Q.; Liu, X. C.; Han, X.W.; Bao, X. H. J. Chem. Phys. 2003, 119, 9765.  

    11. [11]

      (11) Zhou, D. H.; Ma, D.; Liu, X. C.; Bao, X. H. J. Chem. Phys. 2001, 114, 9125.  

    12. [12]

      (12) Hohenberg, P.; Kohn,W. Phys. Rev. 1964, 136, 864.  

    13. [13]

      (13) Kohn,W.; Becke, A. D.; Parr, R. G. J. Phys. Chem. 1996, 100, 12974.  

    14. [14]

      (14) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.  

    15. [15]

      (15) Schmider, H. L.; Becke, A. D. J. Chem. Phys. 1998, 108, 9624.  

    16. [16]

      (16) Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.  

    17. [17]

      (17) Grimme, S. J. Comput. Chem. 2004, 25, 1463.  

    18. [18]

      (18) Grimme, S. J. Comput. Chem. 2006, 27, 1787.  

    19. [19]

      (19) Zhao, Y.; Truhlar, D. G. J. Phys. Chem. C 2008, 112, 6860.  

    20. [20]

      (20) Pidko, E. A.; Hensen, E. J. M.; van Santen, R. A. J. Phys. Chem. C 2008, 112, 19604.  

    21. [21]

      (21) Boronat, M.; Martinez, C.; Corma, A. Phys. Chem. Chem. Phys. 2011, 13, 2603.

    22. [22]

      (22) Boekfa, B.; Choomwattana, S.; Khongpracha, P.; Limtrakul, J. Langmuir 2009, 22, 12990.

    23. [23]

      (23) Vankoningsveld, H.; Van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B 1987, 43, 127.  

    24. [24]

      (24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, B.01; Gaussian Inc.:Wallingford, CT, 2009.

    25. [25]

      (25) Maseras, F.; Morokuma, K. J . Comput. Chem. 1995, 16, 1170.  

    26. [26]

      (26) Humbel, S.; Siebe, R. S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.  

    27. [27]

      (27) Lesthaeghe, D.; Speybroeck, V. V.; Marin, G. B.;Waroquier, M. Chem. Phys. Lett. 2006, 417, 309.  

    28. [28]

      (28) Sumpter, B. G. J. Chem. Theory Comput. 2010, 6, 727.  

    29. [29]

      (29) Rigby, A. M.; Kramer, G. J.; van Santen, R. A. J. Catal. 1997, 170, 1.  

    30. [30]

      (30) Zheng, X.; Blowers, P. J. Phys. Chem. A 2006, 110, 2455.  

    31. [31]

      (31) Zheng, A. M.; Zhang, H. L.; Lu, X.; Liu, S. B.; Deng, F. J. Phys. Chem. B 2008, 112, 4496.

    32. [32]

      (32) Zheng, A. M.; Huang, S.; Chen,W.;Wu, P.; Zhang, H.; Lee, H.; Ménorval, L.; Deng, F.; Liu, S. B. J. Phys. Chem. A 2008, 112, 7337.

    33. [33]

      (33) Brand, H. V.; Curtiss, L. A.; Iton, L. E. J. Phys. Chem. 1993, 97, 12773.  

    34. [34]

      (34) Datka, J.; Boczar, M.; Rymarowicz, P. J. Catal. 1988, 114, 368.  

    35. [35]

      (35) Dunne, J. A.; Rao, M.; Sircar, S.; Corte, R. J.; Myers, A. L. Langmuir 1996, 12, 5896.  

    36. [36]

      (36) Savitz, S.; Siperstein, F.; Rorte, R. J.; Myers, A. L. J. Phys. Chem. B 1998, 102, 6865.

    37. [37]

      (37) Lee, C.; Parrillo, D. J.; rte, R. J.; Farneth,W. E. J. Am. Chem. Soc. 1996, 118, 3262.  

    38. [38]

      (38) Fuchs, A. H.; Adamo, C. J. Phys. Chem. Lett. 2010, 1, 763.  

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    5. [5]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    6. [6]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    9. [9]

      Xuefei Zhao Xuhong Hu Zhenhua Jia . 理论与计算化学在傅-克烷基化反应教学中的应用. University Chemistry, 2025, 40(8): 360-367. doi: 10.12461/PKU.DXHX202410008

    10. [10]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    11. [11]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    12. [12]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    18. [18]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(1025)
  • Abstract views(2649)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return