Citation: HOU Hai-Yun, HUANG Yin-Rong, WANG Sheng-Ze, BAI Bo-Feng. Preparation and Physicochemical Properties of Imidazolium Acetates and the Conductivities of Their Aqueous and Ethanol Solutions[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2512-2520. doi: 10.3866/PKU.WHXB20111120 shu

Preparation and Physicochemical Properties of Imidazolium Acetates and the Conductivities of Their Aqueous and Ethanol Solutions

  • Received Date: 29 July 2011
    Available Online: 7 September 2011

    Fund Project: 西安工程大学科研启动基金(BS0704) (BS0704)西安工程大学研究生创新基金(chx110944)资助项目 (chx110944)

  • The ionic liquids 1-methylimidazolium acetate ([Mim]Ac), 1,3-dimethylimidazolium acetate ([Mmim]Ac), and 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) were prepared and their densities, conductivities, and absolute viscosities were measured at temperatures ranging from 293.15 to 338.14 K. Their corresponding molar conductivities and kinematic viscosities were also calculated. The dependence of densities, conductivities, molar conductivities, absolute viscosities, and kinematic viscosities on temperature were obtained using the least-squares method. The influence of the alkyl chains at the 3-position N atom of the imidazole ring on the above five physicochemical properties of these imidazolium acetates were discussed. The conductivities of binary solutions of [Mim]Ac {or [Mmim]Ac or [Emim]Ac} (1)- H2O (or EtOH) (2) were measured for a full set of mole fractions and the corresponding molar conductivities of the three imidazolium acetates in the six binary solutions were also calculated. In water and ethanol solutions we found that the conductivities and the molar conductivities increased initially and then decreased with an increase in the mole fraction of the imidazolium acetates. At the same concentration a longer alkyl chain at the 3-position of the imidazole ring resulted in higher conductivity and molar conductivity for the imidazolium acetates. Furthermore, the conductivities and molar conductivities of the aqueous solutions are always far higher than those of ethanol solutions.
  • 加载中
    1. [1]

      (1) Chritopher, B. J.; Duncan, B.W.; Kenneth, S. R. Chem. Commun. 1996, No. 14, 1625.  

    2. [2]

      (2) James, H. D., Jr.; Kerri, J. F.; Travis, M. Tetrahedron Letters 1998, 39, 8955.  

    3. [3]

      (3) Zhang, S. J.; Lv, X. M. Ionic Liquids: from Basic Research to Industry Applications; Science Press: Beijing, 2006; pp 33-34. [张锁江, 吕兴梅. 离子液体从基础研究到工业应用. 北京: 科学出版社, 2006: 33-34.]

    4. [4]

      (4) Zhao, J.; Dong, C. C.; Li, C. X. Fluid Phase Equilibrum 2006, 242, 147.  

    5. [5]

      (5) Wang, F. H.; Li, C. X.; Meng, H.;Wang, Z. H. Journal of Beijing University of Chemical Technology 2006, 33, 17. [王方惠, 李春喜, 孟洪, 王子镐. 北京化工大学学报, 2006, 33, 17.]

    6. [6]

      (6) Handy, S. T. Chem. -Eur. J. 2003, 9, 2938.  

    7. [7]

      (7) Liu, Q. B.; Zhang, Z. H.; Zhang, F. J. Non-Toxic Ionic Liquid, Preparation Method and Its Application. CN Patent 16 510 89, 2005-08-10. [刘庆彬, 张占辉, 张福军. 一种无毒离子液体、 制备方法及其应用: 中国, CN16 510 89 [P]. 2005-08-10.]  

    8. [8]

      (8) Wilkes, J. S.; Zaworotko, M. J. Chem. Soc. Chem. Commun. 1992, No. 13, 965.

    9. [9]

      (9) Christopher, L. S.; Adam,W.; Robin, D. A.; Asanah, R.; Steven, T. F.; Tatiana, B.; Michael, R. E. Biomacromolecules 2010, 11, 2927.  

    10. [10]

      (10) Nina, G.; Martin, H.;Werner-Michael, K.; Helmut, R. J. Phys. Chem. B 2010, 114, 12468.  

    11. [11]

      (11) Duan, X. Q.; Xu, J. G.; He, B. H.; Li, J. R.; Cheng, C. Z. New Chemical Materials 2011, 39 (Suppl. 4), 56. [段先泉, 徐纪刚, 何北海, 李军荣, 程春祖. 化工新型材料, 2011, 39 (Suppl. 4), 56.]

    12. [12]

      (12) Troshenkova, S. V.; Sashina, E. S.; Novoselov, N. P.; Arndt, K. F. Russ. J. Gen. Chem. 2010, 80, 501.  

    13. [13]

      (13) Fröba, A. P.; Rausch, M. H.; Krzeminski, K.; Assenbaum, D.; Wasserscheid, P.; Leipertz, A. Int. J. Thermophys. 2010, 31, 2059.  

    14. [14]

      (14) Evlampieva, N. P.; Vitz, J.; Schubert, U. S.; Ryumtsev, E. I. Russ. J. Gen. Chem. 2009, 82, 666.

    15. [15]

      (15) Frank,W.; Persin, Z., Karin, S. K.; Martin, R.; Volker, R.; Andreas, B.; Hans-Peter, F.; Frank, M. Cellulose 2011, 18, 1165.  

    16. [16]

      (16) Birgit, K.; Christoph, M.; Frank, M. Cellulose 2008, 15, 59.  

    17. [17]

      (17) Timothy, B. C. R.; Supratim, D.; Harvey, B.W.; Blake, S. A.; Bradley, H. M. Bioenergy Research 2010, 3, 123.  

    18. [18]

      (18) Troshenkova, S. V.; Sashina, E. S.; Novoselov, N. P.; Arndt, K. F.; Jankowsky, S. Russ. J. Gen. Chem. 2010, 80, 106.  

    19. [19]

      (19) Romain, S.; Kim, A. L.; Michael, R. E.; Tatiana, B. J. Phys. Chem. B 2010, 114, 7222.  

    20. [20]

      (20) Sebastian, F.; Sasisanker, P.; Harvey, B.W.; John Prausnitz M. J. Chem. Eng. 2011, 56, 31.

    21. [21]

      (21) Nilesh, D. R.; Hyung, K. J.; Johannes, K. J. Phys. Chem. A 2009, 113, 10397.  

    22. [22]

      (22) Bowron, D. T.; A stino, C. D.; Gladden, L. F.; Hardacre, C.; Holbrey, J. D.; Lagunas, M. C.; McGre r, J.; Mantle, M. D.; Mullan, C. L.; Youngs, T. G. A. J. Phys. Chem. B 2010, 114, 7760.  

    23. [23]

      (23) Song, H. Z.; Niu, Y. H.;Wang, Z. G.; Zhang, J. Biomacromolecules 2011, 12, 1087.

    24. [24]

      (24) Martin, G.; Kerstin, S.; Tim, L.; Thomas, H.; Tatiana, B. Biomacromolecules 2009, 10, 1188.  

    25. [25]

      (25) Cheng, N. L. Handbook of Solvents; Chemical Industry Press: Beijing, 2007; p 11. [程能林. 溶剂手册. 北京: 化学工业出版社, 2007: 11].

    26. [26]

      (26) Peter,W.; Tom,W. Ionic Liquids in Synthesis, 2nd ed.; WILEY-VCH Verlag GmbH & Co. KGaA: Darmstadt, 2008; p 163.

    27. [27]

      (27) Smedley, S. I. The Interpretation of Ionic Conductivity in Liquids; Plenum Press: New York, 1980; p 103.  

  • 加载中
    1. [1]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    2. [2]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    5. [5]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    6. [6]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    7. [7]

      Xinghai LiZhisen WuLijing ZhangShengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 2309041-0. doi: 10.3866/PKU.WHXB202309041

    8. [8]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    9. [9]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    11. [11]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    18. [18]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

Metrics
  • PDF Downloads(1314)
  • Abstract views(3930)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return