Citation: DOU Yu-Sheng, LI Wei, YUAN Shuai, ZHANG Wen-Ying, LI An-Yang, SHU Kun-Xian, TANG Hong. Dynamics Simulation of Photophysical Deactivation Pathway for Stacked Thymines[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2559-2564. doi: 10.3866/PKU.WHXB20111115 shu

Dynamics Simulation of Photophysical Deactivation Pathway for Stacked Thymines

  • Received Date: 24 May 2011
    Available Online: 5 September 2011

    Fund Project: 国家自然科学基金(21073242) (21073242) 重庆市自然科学基金(cstc2011jjA00009) (cstc2011jjA00009)重庆市教委科学技术项目(KJ100507)资助 (KJ100507)

  • A semiclassical dynamics simulation study was undertaken to determine the photophysical deactivation of the lowest excited state of two stacked thymines. Only one thymine, referred to as T, was excited by a laser pulse and the other molecule, referred to as T′, remained in the ground state. The simulation results show that charge transfer between the two thymines because of a π-stacking interaction leads to the formation of an excimer state, which includes a negative T and a positive T′. Additionally, the simulation study indicates that a steric effect of the neighboring bases inhibits the out-of-plane deformation, which is essential in accessing the conical intersection between the lowest electronic-excited state and the ground state. The steric effect eventually leads to a longer electronic-excited state lifetime for the two stacked thymines. The simulation results reveal that when the interbase distance is less than 0.3 nm the molecule T has a remarkable deformation at its C5 and C6 sites resulting in charge recombination. The charge recombination ultimately makes the system electronically neutral. On the other hand, the molecule T′ has a strong twist about its C5′―C6′ bond in the proximity of the avoided crossing by which the system decays to the ground state. Finally, the two thymine molecules in their ground states recover their planar geometries.
  • 加载中
    1. [1]

      (1) Beukers, R.; Eker, A. P. M.; Lohman, P. H. M. DNA Repair 2008, 7, 530.  

    2. [2]

      (2) Melnikova, V. O. ; Ananthaswamy, H. N. Mutat. Res. 2005, 571, 91.

    3. [3]

      (3) Cadet, J.; Sage, E.; Douki, T. Mutat. Res. 2005, 571, 3.

    4. [4]

      (4) Mouret, S.; Badouin, C.; Charveron, M.; Favier, A.; Cadet, J.; Douki, T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3765.

    5. [5]

      (5) Douki, T.; Reynaud-Angelin, A.; Cadet, J.; Sage, E.; Biochemistry 2003, 42, 9221.  

    6. [6]

      (6) Durbeej, B.; Eriksson, L. A. Photochem. Photobiol. 2003, 78, 159.  

    7. [7]

      (7) Schreier,W. J.; Schrader, T. E.; Koller, F. O.; Gilch, P.; Crespo-Hernández, C. E.; Swaminathan, V. N.; Carell, T.; Zinth, W.; Kohler, B. Science 2007, 315, 625.  

    8. [8]

      (8) Schreier,W. J.; Kubon, J.; Regner, N. J. Am. Chem. Soc. 2009, 131, 5038.  

    9. [9]

      (9) Zhang, R. B.; Eriksson, L. A. J. Phys. Chem. B 2006, 110, 7556.  

    10. [10]

      (10) Durbeej, B.; Eriksson, L. A. J. Photochem. Photobiol. A 2002, 152, 95.  

    11. [11]

      (11) Boggio-Pasqua, M.; Groenhof, G.; Sch?fer, L. V.; Grubmüller, H.; Robb, M. A. J. Am. Chem. Soc. 2007, 129, 10996.  

    12. [12]

      (12) Blancafort, L.; Migani, A. J. Am. Chem. Soc. 2007, 129, 14540.  

    13. [13]

      (13) Law, Y. K.; Azadi, J.; Crespo-Hernández, C. E.; Olmon, E.; Kohler, B. Biophys. J. 2008, 94, 3590.  

    14. [14]

      (14) Johnson, A. T.;Wiest, O. J. Phys. Chem. B 2007, 111, 14398.  

    15. [15]

      (15) McCullagh, M.; Hariharan, M.; Lewis, F. D.; Markovitsi, D.; Douki, T.; Schatz, G. C. J. Phys. Chem. B 2010, 114, 5215.  

    16. [16]

      (16) Eisinger, J.; Lamola, A. Biochem. Biophys. Res. Commun. 1967, 28, 558.  

    17. [17]

      (17) Eisinger, J.; Shulman, R. G. Proc. Natl. Acad. Sci. 1967, 58, 895.  

    18. [18]

      (18) Eisinger, J.; Guéron, M.; Shulman, R. G.; Yamane, T. Proc. Natl. Acad. Sci. U. S. A. 1966, 55, 1015.  

    19. [19]

      (19) Birks, J. B. Nature 1967, 214, 1187.

    20. [20]

      (20) Takaya, T.; Su, C.; de La Harpe, K.; Crespo-Hernández, C. E.; Kohler, B. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 10285.  

    21. [21]

      (21) Conti, I.; Altoe, P.; Stenta, M.; Garavelli, M.; Orlandi, G. Phys. Chem. Chem. Phys. 2010, 12, 5016.

    22. [22]

      (22) Crespo-Hernández, C.; Kohler, B. Nature 2005, 436, 1141.  

    23. [23]

      (23) Schwalb, N. K.; Temps, F. Science 2008, 322, 243.  

    24. [24]

      (24) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Am. Chem. Soc. 2006, 128, 11894.  

    25. [25]

      (25) Crespo-Hernández, C. E.; Kohler, B. J. Phys. Chem. B 2004, 108, 11182.  

    26. [26]

      (26) Kwok,W. M.; Ma, C.; Phillips, D. L. J. Phys. Chem. B 2009, 113, 11527.  

    27. [27]

      (27) Holm, A. I. S.; Nielsen, L. M.; Kohler, B.; Hoffmann, S. V.; Nielsen, S. B. Phys. Chem. Chem. Phys. 2010, 12, 3426.

    28. [28]

      (28) Cohen, B.; Larson, M. H.; Kohler, B. Chem. Phys. 2008, 350, 165.  

    29. [29]

      (29) Dou, Y.; Torralva, B.; Allen, R. J. Mod. Optics. 2003, 50, 2615.

    30. [30]

      (30) Dou, Y.; Torralva, B.; Allen, R. Chem. Phys. Lett. 1998, 378, 323.

    31. [31]

      (31) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 49.

    32. [32]

      (32) Haugk, M.; Elsner, J.; Frauenheim, T.; Seifert, G.; Sternberg, M. Phys. Status Solidi B, 2000, 217, 473.  

    33. [33]

      (33) Frauenheim, T.; Seifert, G.; Elstner, M.; Niehaus, T. A.; K?hler, C.; Amkreutz, M.; Sternberg, M.; Hajnal, Z.; Di Carlo, A.; Suhai,S. J. Phys: Condens. Mater. 2002, 14, 3015.  

    34. [34]

      (34) Wanko, M.; Garavelli, M.; Bernardi, F.; Niehaus, T. A.; Frauenheim, T.; Elstner, M. J. Chem. Phys. 2004, 120, 1674.  

    35. [35]

      (35) Zheng, G.; Lundberg, M.; Jakowski, J.; Vreven,T.; Frisch, M. J.; Morokuma, K. Int. J. Quantum Chem. 2009, 109, 1841.  

    36. [36]

      (36) Yuan, S.; Dou, Y. S.;Wu,W. F.; Hu, Y.; Zhao, J. S. J. Phys. Chem. A 2008, 112, 13326.  

    37. [37]

      (37) Yuan, S.;Wu,W. F.; Dou, Y. S.; Zhao, J. S. Chin. Chem. Lett. 2008, 19, 1379.  

    38. [38]

      (38) Dou, Y. S.; Hu, Y.; Yuan, S.;Wu,W. F.; Tang, H. Mol. Phys. 2009, 107, 181.  

    39. [39]

      (39) Yuan, S.;Wang, D.; Bai, M. Z.;Wei Z. L.; Meng, P.; Dou, Y. S. Journal of Chongqing Univerisity and Telecommunications(Natural Science Edition) 2009, 21, 821. [袁帅, 王丹, 白明泽, 魏照林, 蒙平, 豆育升, 重庆邮电大学学报(自然科学版), 2009, 21, 821]

    40. [40]

      (40) Yuan, S.;Wu,W.;Wen, Z.; Shu, K.; Tang, H.; Dou, Y.; Lo, G. Mol. Phys. 2010, 108, 3431.  

    41. [41]

      (41) Jiang, C.; Xie, R.; Li, F.; Allen, R. J. Phys. Chem. A 2011, 115, 244.  

    42. [42]

      (42) Lei, Y.; Yuan, S.; Dou, Y.;Wang, Y.;Wen, Z. J. Phys. Chem. A 2008, 112, 8497.  

    43. [43]

      (43) Zhang,W.; Yuan, S.; Li, A.; Dou, Y.; Zhao, J.; Fang,W. J. Phys. Chem. C 2010, 114, 5594.  

    44. [44]

      (44) Dou, Y.; Xiong, S.;Wu,W. F.; Yuan, S.; Tang, H. J. Photochem. Photobiol. B 2010, 101, 31.  

    45. [45]

      (45) Zhang,W.; Yuan, S.;Wang, Z.; Qi, Z.; Zhao, J.; Dou, Y.; Lo, G. Chem. Phys. Lett. 2011, 506, 303.  

    46. [46]

      (46) Yuan, S; Zhang,W. Y.; Li, A. Y.; Zhu, Y. M.; Dou, Y. S. Acta Phys. -Chim. Sin. 2011, 27, 824. [袁帅, 张文英, 李安阳, 朱义敏, 豆育升, 物理化学学报, 2011, 27, 824.]

    47. [47]

      (47) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Am. Chem. Soc. 2005, 127, 6257.  

    48. [48]

      (48) Perun, S.; Sobolewski, A. L.; Domcke,W. J. Phys. Chem. A 2006, 110, 13238.  

    49. [49]

      (49) Rehm, D.;Weller, A. Isr. J. Chem. 1970, 8, 259.

    50. [50]

      (50) Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541.  

    51. [51]

      (51) Liu, Q.; Liu, Z. L. Chin. J. Org. Chem 2009, 29, 380. [刘强, 刘中立,有机化学, 2009, 29, 380]

    52. [52]

      (52) Devoe, H.; Tinoco, I. J. Mol. Biol. 1962, 4, 500.  

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    3. [3]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    4. [4]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    5. [5]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      Weilai YuChuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    11. [11]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    12. [12]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    13. [13]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    20. [20]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

Metrics
  • PDF Downloads(822)
  • Abstract views(2356)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return