Citation: YIN Shi-Bin, LUO Lin, JING Sheng-Yu, ZHU Qiang-Qiang, QIANG Ying-Huai. Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, ;2012, 28(01): 85-89. doi: 10.3866/PKU.WHXB201111153 shu

Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction

  • Received Date: 9 October 2011
    Available Online: 15 November 2011

    Fund Project: 国家自然科学基金(21106178) (21106178) 中国博士后基金(20110491480) (20110491480) 徐州市科技项目(XJ11B009) (XJ11B009) 徐州市多晶硅与光伏能源技术专项(6AT102092) (6AT102092)材料复合新技术国家重点实验室(武汉理工大学)开放基金(2012-KF-13) (武汉理工大学)开放基金(2012-KF-13)中国矿业大学青年基金(2011QNA21, 2009A026)资助 (2011QNA21, 2009A026)

  • The influence of intermittent microwave heating (IMH) on the physicochemical and electrochemical properties of platinum loaded on multi-walled carbon nanotubes (Pt/MWCNTs) was investigated. X-ray diffraction results revealed that the crystal size of Pt particles hardly increased for smaller numbers of pulse repetitions, but became much larger as the number of pulse repetitions increased. Cyclic voltammetry (CV) and rotating disk electrode (RDE) results showed that the Pt/MWCNTs catalysts prepared by IMH in a repeated pulse form of 5s-on/5s-off for 20 pulse repetitions possessed the largest electrochemical surface area. An onset potential of approximately 1.0 V (vs RHE) was observed for the oxygen reduction reaction in oxygen-saturated 0.5 mol·L-1 H2SO4 aqueous solutions. The IMH method is simple, economical, and can potentially be scaled up for the mass production of nanomaterials.
  • 加载中
    1. [1]

      (1) Zhang, S. S.; Yuan, X. Z.; Hin, J. N. C.;Wang, H. J. J. Power Sources 2009, 194, 588.  

    2. [2]

      (2) Rao, G. S.; Cheng, M. Q.; Zhong, Y.; Deng, X. C.; Yi, F.; Chen, Z. R.; Zhong, Q. L.; Fan, F. R.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2011, 27, 2373. [饶贵仕, 程美琴, 钟艳, 邓小聪, 易飞, 陈治仁, 钟起玲, 范凤茹, 任斌, 田中群. 物理化学学报, 2011, 27, 2373.]

    3. [3]

      (3) Fugane, K.; Mori, T.; Ou, D. R.; Suzuki, A.; Yoshikawa, H.; Masuda, T.; Uosaki, K.; Yamashita, Y.; Ueda, S.; Kobayashi, K.; Okazaki, N.; Matolinova, I.; Matolin, V. Electrochim. Acta 2011, 56, 3874.  

    4. [4]

      (4) Hara, Y.; Minami, N.; Matsumoto, H.; Itagaki, H. Appl. Catal. A 2007, 332, 289.  

    5. [5]

      (5) Keng, P. Y.; Bull, M. M.; Shim, I. B.; Nebesny, K. G.; Armstrong, N. R.; Sung, Y.; Char, K.; Pyun, J. Chem. Mater. 2011, 23, 1120.  

    6. [6]

      (6) Yin, S. B.; Mu, S. C.; Lv, H. F.; Cheng, N. C.; Pan, M.; Fu, Z. Y. Appl. Catal. B 2010, 93, 233.  

    7. [7]

      (7) Zhou, Z. H.;Wang, S. L.; Zhou,W. J.;Wang, G. X.; Jiang, L. H.; Li,W. Z.; Song, S. Q.; Liu, J. G.; Sun, G. Q.; Xin, Q. Chem. Commun. 2003, 394.

    8. [8]

      (8) Wang, X. Z.; Zheng, J. S.; Fu, R.; Ma, J. X. Acta Phys. -Chim. Sin. 2011, 27, 85. [王喜照, 郑俊生, 符蓉, 马建新. 物理化学学报, 2011, 27, 85.]

    9. [9]

      (9) Shen, P. K.; Yin, S. B.; Li, Z. H.; Chen, C. Electrochim. Acta 2010, 55, 7969.  

    10. [10]

      (10) Yin, S. B.; Luo, L.; Xu, C.; Zhao, Y. L.; Qiang, Y. H.; Mu, S. C. J. Power Sources 2012, 198, 1.  

    11. [11]

      (11) Hu, Z. F.; Chen, C.; Meng, H.;Wang, R. H.; Shen, P. K.; Fu, H. G. Electrochem. Commun. 2011, 13, 763.  

    12. [12]

      (12) Yin, S. B.; Cai, M.;Wang, C. X.; Shen, P. K. Energy Environ. Sci. 2011, 4, 558.  

    13. [13]

      (13) Yin, S. B.; Shen, P. K.; Song, S. Q.; Jiang, S. P. Electrochim. Acta 2009, 54, 6954.  

    14. [14]

      (14) Tian, Z. Q.; Xie, F. Y.; Shen, P. K. J. Mater. Sci. 2004, 39, 1507.  

    15. [15]

      (15) Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. J. Phys. Chem. B 2006, 110, 5343.  

    16. [16]

      (16) Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources 2007, 170, 46.  

    17. [17]

      (17) Li, X.; Chen,W. X.; Zhao, J.; Xing,W.; Xu, Z. D. Carbon 2005, 43, 2168.  

    18. [18]

      (18) Li,W. Z.; Liang, C. H.; Zhou,W. J.; Qiu, J. S.; Li, H. Q.; Sun, G. Q.; Xin, Q. Carbon 2004, 42, 436.  

    19. [19]

      (19) Li, Y. L.; Hu, F. P.;Wang, X.; Shen, P. K. Electrochem. Commun. 2008, 10, 1101.  

    20. [20]

      (20) Hu, F. P.; Shen, P. K.; Li, Y. L.; Liang, J. Y.;Wu, J.; Bao, Q. L.; Li, C. M.;Wei, Z. D. Fuel Cells 2008, 8, 429.  

    21. [21]

      (21) Song, S. Q.; Yin, S. B.; Li, Z. H.; Shen, P. K.; Fu, R.W.;Wu, D. C. J. Power Sources 2010, 195, 1946.  

    22. [22]

      (22) Patterson, A. L. Phys. Rev. 1939, 56, 978.  

    23. [23]

      (23) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.  

    24. [24]

      (24) Xing, Y. C.; Li, L.; Chusuei, C. C.; Hull, R. V. Langmuir 2005, 21, 4185.  

    25. [25]

      (25) Xing, Y. J. Phys. Chem. B 2004, 108, 19255.  

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    18. [18]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(731)
  • Abstract views(2595)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return