Citation: LIN Xiao, WU Ming-Xing, AN Jiang, MIAO Qing-Qing, QIN Da, MA Ting-Li. Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2577-2582. doi: 10.3866/PKU.WHXB20111112 shu

Optimization of the Photoelectric Performance of Large-Scale All-Flexible Dye-Sensitized Solar Cells

  • Received Date: 4 July 2011
    Available Online: 2 September 2011

    Fund Project: 国家自然科学基金(50773008) (50773008)国家高技术研究发展计划(863) (2009AA03Z220)资助项目 (863) (2009AA03Z220)

  • Highly efficient large scale flexible dye-sensitized solar cells (DSCs) were successfully designed and fabricated. By the introduction of a light scattering layer or pressure, the DSC efficiency was greatly improved. The flexible DSCs with a small surface area (0.4 cm × 0.4 cm) gave a high energy conversion efficiency of 5.50%. The energy conversion efficiencies of large area DSCs (2 cm×3 cm, active area of 2.7 cm2) improved from 1.52% to 1.81% and 2.50%, which is an increase of 20.0% and 66.7% compared with the DSCs prepared without any treatment. The 5 cm×7 cm DSCs (active area of 16.2 cm2) without any optimization showed an energy conversion efficiency of 1.60% under a sunlight intensity of 40 mW·cm-2. The mechanism for the improvement in efficiency was also studied. The results of electrochemical impedance spectroscopy (EIS) demonstrated that the pressure method can significantly reduce the series resistance (Rs) and the charge transfer resistance (Rct) in the TiO2/dye/electrolyte interface. Scanning electron microscopy (SEM) showed that the TiO2 particles were far more closely connected after pressing, which was helpful for electron transport in the TiO2 network as well as for dye adsorption. In addition, the photovoltaic parameters of these flexible DSCs were found to be stable after the 900 h stability tests. The experimental results obtained for these flexible DSCs can be used as a foundation for further basic research and for industrialization technical research.
  • 加载中
    1. [1]

      (1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737.  

    2. [2]

      (2) Grätzel, M. Nature 2001, 414, 338.  

    3. [3]

      (3) Tao, L.; Yang, Y. Z.; Shi, C.W.;Wu, Y. C.;Wu, X. Y. Acta Phys. -Chim. Sin. 2010, 26, 578. [桃李, 杨燕珍, 史成武, 吴玉程, 吴小燕. 物理化学学报, 2010, 26, 578.]

    4. [4]

      (4) Li, B.; Cheng, P.; Deng, C. S. Chin. J. Chem. 2007, 20, 816.  

    5. [5]

      (5) Hagfeldt, A.; Boschloo, G.; Sun, L. C.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.  

    6. [6]

      (6) Pichot, F.; Pitts, J. R.; Gregg, B. A. Langmuir 2000, 16, 5626.  

    7. [7]

      (7) Chen, D. H.; Huang, F. Z.; Cheng, Y. B.; Caruso, R. A. Adv. Mater. 2009, 21, 2206.  

    8. [8]

      (8) Wang, Y.;Wu, J. H.; Fan, L. Q.; Lan, Z.; Xiao, Y. M.; Li, Q. H.; Huang, M. L. Mater. Rev. 2010, 24, 131. [王岳, 吴季怀, 范乐庆, 兰章, 肖尧明, 李清华, 黄妙良. 材料导报, 2010, 24, 131.]

    9. [9]

      (9) Wang, M. K.; Anghel, A. M.; Marsan, B.; Ha, N. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2009, 131, 15976.  

    10. [10]

      (10) Yang, L.; Xin, G.;Wu, L. Q.; Ma, T. L. Prog. Chem. 2009, 21, 2242. [杨丽, 辛刚, 吴丽琼, 马廷丽. 化学进展, 2009, 21, 2242.]

    11. [11]

      (11) Iwasaki, M.; Lee, C.W.; Kim, T. H.; Park,W. K. J. Ceram. Soc. Jpn. 2008, 116, 153.  

    12. [12]

      (12) Lindström, H.; Holmberg, A.; Magnusson, E.; Lindquist, S. E.; Malmqvist, L.; Hagfeldt, A. Nano Lett. 2001, 1, 97.  

    13. [13]

      (13) Lin, H.; Li, X.; Liu, Y. Z.; Li, J. B. Mater. Sci. Eng. B 2009, 161, 2.  

    14. [14]

      (14) Ma, T. L.; Fang, X. M.; Akiyama, M.; Inoue, K.; Nomam, H.; Abe, E. J. Electroanal. Chem. 2004, 574, 77.  

    15. [15]

      (15) Yang, L.;Wu, L. Q.;Wu, M. X.; Xin, G.; Lin, H.; Ma, T. L. Electrochem. Commun. 2010, 12, 1000.  

    16. [16]

      (16) Papageorgiou, N.; Maier,W. F.; Grätzel, M. J. Electrochem. Soc. 1997, 144, 876.  

    17. [17]

      (17) Han, L.; Koide, N.; Chiba, Y.; Islam, A.; Komiya, R.; Fuke, N.; Fukui, A.; Yamanaka, R. Appl. Phys. Lett. 2005, 86, 21350.

    18. [18]

      (18) Usami, A. Sol. Energy Mater. Sol. Cells 2000, 64, 73.  

    19. [19]

      (19) Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301.  

    20. [20]

      (20) Liu, J.; Yang, H. T.; Zhang, J. B.; Zhou, X.W.; Lin Y. Acta Phys. -Chim. Sin. 2011, 27, 408. [刘佳, 杨浩田, 张敬波, 周晓文, 林原. 物理化学学报, 2011, 27, 408.]

    21. [21]

      (21) Koide, N.; Islam, A.; Chiba, Y.; Han, L. Y. J. Photochem. Photobiol. A: Chem. 2006, 182, 296.  

    22. [22]

      (22) Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.  

    23. [23]

      (23) Wang, Q.; Moser, J. E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945.  

    24. [24]

      (24) Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 12525.  

    25. [25]

      (25) Ikegami, M.; Suzuki, J.; Teshima, K.; Kawaraya, M.; Miyasaka, T. Sol. Energy Mater. Sol. Cells 2009, 93, 836.  

    26. [26]

      (26) Trupke, T.;Würfel, P.; Uhlendorf, I. J. Phys. Chem. B 2000, 104, 11484.  

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    5. [5]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    9. [9]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    10. [10]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    12. [12]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    14. [14]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    15. [15]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    16. [16]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    17. [17]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    20. [20]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

Metrics
  • PDF Downloads(1080)
  • Abstract views(2752)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return