Citation: ZHANG Yong, XIAO Zhong-Dang. Brownian Dynamics Simulation of Three Nonlinear Interactions on the Folding Process of Single Completely Stretched DNA Chain[J]. Acta Physico-Chimica Sinica, ;2011, 27(11): 2705-2710. doi: 10.3866/PKU.WHXB20111111 shu

Brownian Dynamics Simulation of Three Nonlinear Interactions on the Folding Process of Single Completely Stretched DNA Chain

  • Received Date: 23 May 2011
    Available Online: 2 September 2011

    Fund Project: 国家自然科学基金(20875014, 30901285)资助项目 (20875014, 30901285)

  • The folding dynamics of a completely stretched dexoxyribonucleic acid (DNA) molecule chain is an important feature of single DNA mechanics. By constructing a fully parameterized bead-spring chain model and applying a highly efficient second order semi-implicit predictor-corrector al rithm, we studied the influence of three nonlinear interactions including the excluded volume interaction, the finite extensible nonlinear elastic interaction, and the fluctuating hydrodynamic interaction on the folding process. Simulation results show that the excluded volume interaction decreases the relative radius of gyration of the DNA chain obviously but has no influence on the relaxation time. Instead, the hydrodynamic interaction clearly decreases the relaxation time but it does not change the relative radius of gyration. In addition, the finite extensible elastic interaction was found to decrease the relative radius of gyration of the short chain clearly and increase the relaxation time of the long chain obviously. Furthermore, we obtained a smooth change for the relative radius of gyration with time. The scaling exponent of the relaxation time with the length of chain has two different values under all three nonlinear interactions. These results complete our understanding about single DNA molecule chain mechanics in solution.
  • 加载中
    1. [1]

      (1) Rivetti, C.; Guthold, M.; Bustamante, C. J. Mol. Biol. 1996, 264, 919.  

    2. [2]

      (2) Valle, F.; Favre, M. E.; De Los Rios, P.; Rosa, A.; Dietler, G. Phys. Rev. Lett. 2005, 95, 158105.  

    3. [3]

      (3) Maier, B.; Rädler, J. O. Phys. Rev. Lett. 1999, 82, 1911.  

    4. [4]

      (4) Maier, B.; Rädler, J. O. Macromolecules 2000, 33, 7185.  

    5. [5]

      (5) Hsieh, C.; Li, L.; Larson, R. G. J. Non-Newton. Fluid 2003, 113, 147.  

    6. [6]

      (6) Somasi, M.; Khomami, B.;Woo, N. J.; Hur, J. S.; Shaqfeh, E. S. G. J. Non-Newton. Fluid 2002, 108, 227.  

    7. [7]

      (7) Jendrejack, R. M.; de Pablo, J. J.; Graham, M. D. J. Chem. Phys. 2002, 116, 7752.  

    8. [8]

      (8) Schroeder, C. M.; Shaqfeh, E. S. G.; Chu, S. Macromolecules 2004, 37, 9242.  

    9. [9]

      (9) Ibáñez-García, G. O.; Hanna, S. Soft Matter 2009, 5, 4464.  

    10. [10]

      (10) Prabhakar, R.; Prakash, J. R. J. Non-Newton. Fluid 2004, 116, 163.  

    11. [11]

      (11) Jendrejack, R. M.; Graham, M. D.; Pablo, J. J. D. J. Chem. Phys. 2000, 113, 2894.  

    12. [12]

      (12) Rotne, J.; Prager, S. J. Chem. Phys. 1969, 50, 4831.  

    13. [13]

      (13) Hoda, N.; Kumar, S. Phys. Rev. E 2009, 79, 208011.

    14. [14]

      (14) Li, L.; Larson, R. G.; Sridhar, T. J. Rheol. 2000, 44, 291.  

    15. [15]

      (15) Öttinger, H. C. Stochastic Processes in Polymeric Fluids; Springer Press: Berlin, 1996.  

    16. [16]

      (16) Smith, D. E.; Perkins, T. T.; Chu, S. Macromolecules 1996, 29, 1372.  

    17. [17]

      (17) Smith, D. E.; Chu, S. Science 1998, 281, 1335.  

    18. [18]

      (18) Smith, D. E.; Babcock, H. P.; Chu, S. Science 1999, 283, 1724.  

    19. [19]

      (19) Reese, H. R.; Zimm, R. H. J. Chem. Phys. 1990, 92, 2650.  

    20. [20]

      (20) Rakwoo, C.; Yethiraj, A. J. Chem. Phys. 2001, 114, 7688.  

    21. [21]

      (21) Pham, T. T.; Bajaj, M.; Prakash, J. R. Soft Matter 2008, 4, 1196.  

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    3. [3]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    4. [4]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    6. [6]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    7. [7]

      Xiaohang JINQi LIUJianping LANG . Room‑temperature solid‑state synthesis, structure, and third‑order nonlinear optical properties of phosphine‑ligand‑protected silver thiolate clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1505-1512. doi: 10.11862/CJIC.20250125

    8. [8]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    9. [9]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    13. [13]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    14. [14]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    17. [17]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    18. [18]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(660)
  • Abstract views(2272)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return