Citation: XIE Peng-Yang, ZHUANG Gui-Lin, LÜ Yong-An, WANG Jian-Guo, LI Xiao-Nian. Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects[J]. Acta Physico-Chimica Sinica, ;2012, 28(02): 331-337. doi: 10.3866/PKU.WHXB201111021 shu

Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects

  • Corresponding author: LI Xiao-Nian, 
  • Received Date: 22 July 2011
    Available Online: 2 November 2011

    Fund Project: 国家自然科学基金(20906081)资助项目 (20906081)

  • The adhesion of Ag, Au, and Pt adatoms on pristine graphene and that containing point defects including N-substitution, B-substitution, and a single vacancy, as well as the interfacial properties of these systems, were investigated using density functional theory. The calculations show that Ag and Au cannot bind to pristine graphene. In contrast, B and N-doping increase the interaction between Ag, Au, or Pt metal adatoms and graphene, while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene. Based on electronic structural analysis, N-doping strengthens the covalent bond between Au or Pt and carbon atoms, while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms. Therefore, three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence: vacancy defect>>B-doping>N-doping.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Li, H.; Ma, X. Y.; Dong, J.; Qian,W. P. Anal. Chem. 2009, 81, 8916.  

    3. [3]

      (3) Li, Y. F.; Zhou, Z.; Shen, P.W.; Chen, Z. F. Acs Nano 2009, 3, 1952.  

    4. [4]

      (4) Saha, B.; Shindo, S.; Irle, S.; Morokuma, K. Acs Nano 2009, 3, 2241.  

    5. [5]

      (5) Xu, X. L.; Zhou, G. L.; Li, H. X.; Liu, Q.; Zhang, S.; Kong, J. L. Talanta 2009, 78, 26.  

    6. [6]

      (6) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2011, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2011, 27, 736.]

    7. [7]

      (7) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]

    8. [8]

      (8) Xu, N.; Kong, F. J.;Wang, Y. Z. Acta Phys. -Chim. Sin. 2011, 27, 559. [徐宁, 孔凡杰, 王延宗. 物理化学学报, 2011, 27, 559.]

    9. [9]

      (9) Sun, D. L.; Peng, S. L.; Ouyang, J.; Ouyang, F. P. Acta Phys. -Chim. Sin. 2011, 27, 1103. [孙大立, 彭盛霖, 欧阳俊, 欧阳方平. 物理化学学报, 2011, 27, 1103.]

    10. [10]

      (10) Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R. R. Science 2007, 315, 220.  

    11. [11]

      (11) Yoon, B.; Hakkinen, H.; Landman, U.;Worz, A. S.; Antonietti, J. M.; Abbet, S.; Judai, K.; Heiz, U. Science 2005, 307, 403.  

    12. [12]

      (12) Matthey, D.;Wang, J. G.;Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Science 2007, 315, 1692.  

    13. [13]

      (13) DeVries, G. A.; Brunnbauer, M.; Hu, Y.; Jackson, A. M.; Long, B.; Neltner, B. T.; Uzun, O.;Wunsch, B. H.; Stellacci, F. Science 2007, 315, 358.  

    14. [14]

      (14) Park, S.; Lee, K. S.; Bozoklu, G.; Cai,W.; Nguyen, S. T.; Ruoff, R. S. Acs Nano 2008, 2, 572

    15. [15]

      (15) Lightcap, I. V.; Kosel, T. H.; Kamat, P. V. Nano Lett. 2010, 10, 577.  

    16. [16]

      (16) Li, B.; Lu, G.; Zhou, X. Z.; Cao, X. H.; Boey, F.; Zhang, H. Langmuir 2009, 25, 10455.  

    17. [17]

      (17) Klusek, Z.; Dabrowski, P.; Kowalczyk, P.; Kozlowski,W.; Olejniczak,W.; Blake, P.; Szybowicz, M.; Runka, T. Appl. Phys. Lett. 2009, 95, 113114.  

    18. [18]

      (18) Li, Y. X.;Wei, Z. D.; Zhao, Q. L.; Ding,W.; Zhang, Q.; Chen, S. G. Acta Phys. -Chim. Sin. 2011, 27, 858. [李云霞, 魏子栋, 赵巧玲, 丁炜, 张骞, 陈四国. 物理化学学报, 2011, 27, 858.]

    19. [19]

      (19) Wu, X. Q.; Zong, R. L.; Mu, H. J.; Zhu, Y. F. Acta Phys. -Chim. Sin. 2010, 26, 3002. [吴小琴, 宗瑞隆, 牟豪杰, 朱永法. 物理化学学报, 2010, 26, 3002.]

    20. [20]

      (20) Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys. -Chim. Sin. 2010, 26, 1570. [温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚. 物理化学学报, 2010, 26, 1570.]

    21. [21]

      (21) Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Nano Lett. 2009, 9, 2654.  

    22. [22]

      (22) Xu, C.;Wang, X.; Zhu, J.W. J. Phys. Chem. C 2008, 112, 19841.  

    23. [23]

      (23) Jasuja, K.; Berry, V. Acs Nano 2009, 3, 2358.  

    24. [24]

      (24) Fullam, S.; Cottell, D.; Rensmo, H.; Fitzmaurice, D. Adv. Mater. 2000, 12, 1430.  

    25. [25]

      (25) Carrillo, A.; Swartz, J. A.; Gamba, J. M.; Kane, R. S.; Chakrapani, N.;Wei, B. Q.; Ajayan, P. M. Nano Lett. 2003, 3, 1437.  

    26. [26]

      (26) Li, J.; Moskovits, M.; Haslett, T. L. Chem. Mater. 1998, 10, 1963.  

    27. [27]

      (27) Azamian, B. R.; Coleman, K. S.; Davis, J. J.; Hanson, N.; Green, M. L. H. Chem. Commun. 2002, 366.

    28. [28]

      (28) Marsh, D. H.; Rance, G. A.; Whitby, R. J.; Giustiniano, F.; Khlobystov, A. N. J. Mater. Chem. 2008, 18, 2249.  

    29. [29]

      (29) Liu, L.;Wang, T. X.; Li, J. X.; Guo, Z. X.; Dai, L. M.; Zhang, D. Q.; Zhu, D. B. Chem. Phys. Lett. 2003, 367, 747.  

    30. [30]

      (30) Li, J.; Liu, C. Y. Eur. J. Inorg. Chem. 2010, 8, 1244.

    31. [31]

      (31) Pasricha, R.; Gupta, S.; Srivastava, A. K. Small 2009, 5, 2253.  

    32. [32]

      (32) Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H.W.; Hu, Y. Z.; Ye, M. X. Nano Res. 2010, 3, 339.  

    33. [33]

      (33) Wen, Y. Q.; Xing, F. F.; He, S. J.; Song, S. P.;Wang, L. H.; Long, Y. T.; Li, D.; Fan, C. H. Chem. Commun. 2010, 46, 2596.  

    34. [34]

      (34) Liu, S.;Wang, J. Q.; Zeng, J.; Ou, J. F.; Li, Z. P.; Liu, X. H.; Yang, S. R. J. Power Sources 2010, 195, 4628.  

    35. [35]

      (35) Liu,W. C.; Lin, H. K.; Chen, Y. L.; Lee, C. Y.; Chiu, H. T. Acs Nano 2010, 4, 4149.  

    36. [36]

      (36) Kim, Y. K.; Na, H. K.; Min, D. H. Langmuir 2010, 26, 13065.  

    37. [37]

      (37) Zhang, Y.; Franklin, N.W.; Chen, R. J.; Dai, H. J. Chem. Phys. Lett. 2000, 331, 35.  

    38. [38]

      (38) Gingery, D.; Buhlmann, P. Carbon 2008, 46, 1966.  

    39. [39]

      (39) Bittencourt, C.; Felten, A.; Douhard, B.; Ghijsen, J.; Johnson, R. L.; Drube,W.; Pireaux, J. J. Chem. Phys. 2006, 328, 385.

    40. [40]

      (40) Wei, D. C.; Liu, Y. Q.;Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu, G. Nano Lett. 2009, 9, 1752.  

    41. [41]

      (41) Ghosh, K.; Kumar, M.; Maruyama, T.; Ando, Y. J. Mater. Chem. 2010, 20, 4128.  

    42. [42]

      (42) Liang, Y. X.; Shui, M.; Li, R. S. Acta Phys. -Chim. Sin. 2007, 23, 1647. [梁云霄, 水淼, 李榕生. 物理化学学报, 2007, 23, 1647.]

    43. [43]

      (43) Chi, M.; Zhao Y. P. Comp. Mater. Sci. 2009, 46, 1085.  

    44. [44]

      (44) Kang, J.; Deng, H. X.; Li, S. S.; Li, J. B. J. Phys.: Condens. Matter 2011, 23, 346001.  

    45. [45]

      (45) Jung, N.; Kim, B.; Crowther, A. C.; Kim, N.; Nuckolls, C.; Brus, L. Acs Nano 2011, 5, 5708.  

    46. [46]

      (46) Lv, Y. A.; Zhuang, G. L.;Wang, J. G.; Jia, Y. B.; Xie, Q. Phys. Chem. Chem. Phys. 2011, 13, 12472.

    47. [47]

      (47) Geng, D. S.; Yang, S. L.; Zhang, Y.; Yang, J. L.; Liu, J.; Li, R. Y.; Sham, T. K.; Sun, X. L.; Ye, S. Y.; Knights, S. Appl. Surf. Sci. 2011, 257, 9193.  

    48. [48]

      (48) Carlsson, J. M.; Hanke, F.; Linic, S.; Scheffler, M. Phys. Rev. Lett. 2009, 102, 166104.  

    49. [49]

      (49) Jack, R.; Sen, D.; Buehler, M. J. J. Comput. Theor. Nanos. 2010, 7, 354.  

    50. [50]

      (50) Palacios, J. J.; Fernandez-Rossier, J.; Brey, L. Phys. Rev. B 2008, 77, 195428.  

    51. [51]

      (51) Liu, X. M.; Romero, H. E.; Gutierrez, H. R.; Adu, K.; Eklund, P. C. Nano Lett. 2008, 8, 2613.  

    52. [52]

      (52) Williams, Q. L.; Liu, X.;Walters,W.; Zhou, J. G.; Edwards, T. Y.; Smith, F. L. Appl. Phys. Lett. 2007, 91, 143116.  

    53. [53]

      (53) Lv, Y. A.; Cui, Y. H.; Xiang, Y. Z.;Wang, J. G.; Li, X. N. Comp. Mater. Sci. 2010, 48, 621.  

    54. [54]

      (54) Lee, D. H.; Lee,W. J.; Kim, S. O. Nano Lett. 2009, 9, 1427.  

    55. [55]

      (55) Late, D. J.; Ghosh, A.; Subrahmanyam, K. S.; Panchakarla, L. S.; Krupanidhi, S. B.; Rao, C. N. R. Solid State Commun. 2010, 150, 734.  

    56. [56]

      (56) Dai, X. Q.; Li, Y. H.; Zhao, J. H.; Tang, Y. N. Acta Phys. -Chim. Sin. 2011, 27, 369. [戴宪起, 李艳慧, 赵建华, 唐亚楠. 物理化学学报, 2011, 27, 369.]

    57. [57]

      (57) Hu, L. B.; Hu, X. R.;Wu, X. B.; Du, C. L.; Dai, Y. C.; Deng, J. B. Phys. B-Condens. Matter 2010, 405, 3337.  

    58. [58]

      (58) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Phys. Rev. B 2008, 77, 235430.  

    59. [59]

      (59) Boukhvalov, D.W.; Katsnelson, M. I. Appl. Phys. Lett. 2009, 95, 023109.  

    60. [60]

      (60) Akturk, O. U.; Tomak, M. Phys. Rev. B 2009, 80, 085417

    61. [61]

      (61) Valencia, H.; Gil, A.; Frapper, G. J. Phys. Chem. C 2010, 114, 14141.  

    62. [62]

      (62) Rodriguez-Manzo, J. A.; Cretu, O.; Banhart, F. Acs Nano 2010, 4, 3422.  

    63. [63]

      (63) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. B 1996, 77, 3865.  

    64. [64]

      (64) Giannozzi, P.; Baroni, S.; Bonini, N.; et al . J. Phys.: Condens. Matter 2009, 21, 395502.  

    65. [65]

      (65) Vanderbilt, D. Phys. Rev. B 1990, 41, 7892.  

    66. [66]

      (66) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.  

    67. [67]

      (67) Huang, B. Phys. Lett. A 2011, 375, 845.  

    68. [68]

      (68) Wang, J. G.; Lv, Y. A.; Li, X. N.; Dong, M. D. J. Phys. Chem. C 2009, 113, 890.  

  • 加载中
    1. [1]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    2. [2]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    3. [3]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    4. [4]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    11. [11]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    14. [14]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    17. [17]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    18. [18]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    19. [19]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    20. [20]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

Metrics
  • PDF Downloads(1844)
  • Abstract views(7190)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return