Citation: LU Xiang-Jun, DOU Hui, YANG Su-Dong, HAO Liang, ZHANG Fang, ZHANG Xiao-Gang. Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2333-2339. doi: 10.3866/PKU.WHXB20111022 shu

Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film

  • Received Date: 3 June 2011
    Available Online: 23 August 2011

    Fund Project: 国家重点基础研究发展计划(973) (2007CB209703) (973) (2007CB209703)国家自然科学基金(20873064)资助项目 (20873064)

  • A freestanding film composed of graphene (GN) sheets and polyaniline (PANI) nanofibres was fabricated by reducing a graphite oxide ( )/PANI precursor that was prepared by flow-directed assembly from a complex dispersion of and PANI. This was followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. A scanning electron microscope (SEM) image indicates that the GN/PANI film is a layered structure with PANI nanofibres uniformly sandwiched between the GN sheets. In the composite film, the PANI nanofibres can increase the basal spacing between GN sheets. Therefore, electrolyte ions have better accessibility to the GN surfaces. The GN sheets can act as current collector to decrease the inner resistance of the electrode, which is convenient for electronic and ionic transportation during the redox process of PANI. The electrochemical properties of the freestanding GN/PANI film were estimated by cyclic voltammetry and galvanostatic charge-discharge in 1 mol·L-1 HCl electrolyte. Electrochemical analysis demonstrates that the as-prepared GN/PANI film has od capacitive behavior. The specific capacitance was 495 F·g-1 at a current density of 0.1 A·g-1 and the capacitance was 313 F·g-1 even at a current density of 3 A·g-1. After 2000 cycles, the capacitance of the GN/PANI film decreases 10% of its initial capacitance, which demonstrates that the GN/PANI electrode has od cycle stability.
  • 加载中
    1. [1]

      (1) Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.  

    2. [2]

      (2) Armand, M.; Tarascon, J. M. Nature 2008, 451, 652.  

    3. [3]

      (3) Kang, B.; Ceder, G. Nature 2009, 458, 190.  

    4. [4]

      (4) Zhang, H.; Cao, G. P.; Yang, Y. S. Energy Environ. Sci. 2009, 2, 932.  

    5. [5]

      (5) Zhang, H.; Cao, G. P.;Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Electrochem. Commun. 2008, 10, 1056.  

    6. [6]

      (6) Meng, C. Z.; Liu, C. H.; Fan, S. S. Electrochem. Commun. 2009, 11, 186.  

    7. [7]

      (7) Yang, Y. H.; Sun, H. J.; Peng, T. J.; Huang, Q. Acta Phys. -Chim. Sin. 2010, 27, 736. [杨勇辉, 孙红娟, 彭同江, 黄桥. 物理化学学报, 2010, 27, 736.]

    8. [8]

      (8) Yu, A. P.; Roes, I.; Davies, A.; Chen, Z.W. Appl. Phys. Lett. 2010, 96, 253105.  

    9. [9]

      (9) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.]

    10. [10]

      (10) Yan, X. B.; Chen, J. T.; Yang, J.; Xue, Q. J.; Miele, P. ACS Appl. Mater. Interf. 2010, 2, 2521.  

    11. [11]

      (11) Li, H. L.;Wang, J. X.; Chu, Q. X.; Chu, Z.W.; Zhang, F. B.; Wang, S. C. J. Power Sources 2009, 190, 578.  

    12. [12]

      (12) Zhang, K.; Zhang, L. L.; Zhao, X. S.;Wu, J. S. Chem. Mater. 2010, 22, 1392.  

    13. [13]

      (13) Wang, D.W.; Li, F.; Zhao, J. P.; Ren,W. C.; Chen, Z. G.; Tan, J.;Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. ACS Nano 2009, 3, 1745.  

    14. [14]

      (14) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  

    15. [15]

      (15) Jimenez, P.; Maser,W. K.; Castell, P.; Martinez, M. T.; Benito, A. M. Macromol. Rapid Commun. 2009, 30, 418.  

    16. [16]

      (16) Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.;Wallace, G. G. Nat. Nanotechnol. 2008, 3, 101.  

    17. [17]

      (17) Kane-Maguire, L. A. P.; MacDiarmid, A. G.; Norris, I. D.; Wallace, G. G.; Zheng,W. G. Synth. Met. 1999, 106, 171.  

    18. [18]

      (18) Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.;Wang, X. ACS Appl. Mater. Interf. 2010, 2, 821.  

    19. [19]

      (19) Huang, J. X.; Kaner, R. B. J. Am. Chem. Soc. 2004, 126, 851.  

    20. [20]

      (20) Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren,W. C.; Cheng, H. M. Carbon 2010, 48, 4466.  

    21. [21]

      (21) Lu, X. J.; Dou, H.; Gao, B.; Yuan, C. Z.; Yang, S. D.; Hao, L.; Shen, L. F.; Zhang, X. G. Electrochim. Acta 2011, 56, 5115.  

    22. [22]

      (22) Gao, B.; Fu, Q. B.; Su, L. H.; Yuan, C. Z. Zhang, X. G. Electrochim. Acta 2010, 55, 2311.  

  • 加载中
    1. [1]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    7. [7]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    8. [8]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    10. [10]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    11. [11]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    12. [12]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    15. [15]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    16. [16]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    17. [17]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    18. [18]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    19. [19]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    20. [20]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

Metrics
  • PDF Downloads(1503)
  • Abstract views(3944)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return