Citation: XIA Hui-Yun, ZHANG Ying, GAO Li-Ning, YAN Lu-Ke. Ag-P(AM-co-MAA) Composite Microspheres Based on Morphology Transcription Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2485-2492. doi: 10.3866/PKU.WHXB20111020 shu

Ag-P(AM-co-MAA) Composite Microspheres Based on Morphology Transcription Method

  • Received Date: 7 June 2011
    Available Online: 19 August 2011

    Fund Project: 国家自然科学基金(20903015) (20903015)

  • Ag3PO4-P(AM-co-MAA) composite microspheres were prepared by the combination of a polymeric microgel method and a reverse micelle technique. Novel silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres with sizes ranging in the tens of micrometers and containing a patterned surface as well as core/shell structures were prepared by the chemical reduction of Ag3PO4-P(AM-co-MAA) composite microspheres in ethanol. Energy dispersive X-ray (EDX) analysis revealed that the chemical composition of the"shell"is dominated by Ag, but the"core"is dominated by the template, P(AM-co-MAA). Scanning electron microscopy (SEM) results demonstrate that the surface morphology of the Ag-polymer composite microspheres is similar to that of their precursors and can be controlled to a certain extent by varying the composition of the template copolymer, the approaches and the amount of Ag3PO4 deposited. X-ray diffraction (XRD) indicated that the salt had been completely converted to Ag. Biological antimicrobial experiments showed that this kind of composites exhibit distinctive antibacterial activity toward Escherichia coli and Staphylococcus aureus.
  • 加载中
    1. [1]

      (1) Yang, D. P.; Chen, S. H.; Huang, P.;Wang, X. S.; Jiang,W. Q.; Pandoli, O.; Cui, D. X. Green Chem. 2010, 12, 2038.  

    2. [2]

      (2) Zheng, X. L.; Guo, D.W; Shao Y. L.; Jia, S.; Xu, S. P.; Zhao, B.; Xu,W. Q. Langmuir 2008, 24, 4394.  

    3. [3]

      (3) Kumar, R.; Münstedt, H. Biomaterials 2005, 26, 2081.  

    4. [4]

      (4) Xiao, H. P.; Xia,Y. Y. Polym. Eng. Sci. 2010, 9, 1767.

    5. [5]

      (5) Sun, Y. G. J. Phys. Chem. C 2010, 114, 2127.  

    6. [6]

      (6) F?rster, S.; Plantenberg, T. Angew Chem. Int. Edit. 2002, 41, 688.  

    7. [7]

      (7) Zhang, J. H.; Bai, L.; Zhang, K.; Cui, Z. C.; Zhang, G.; Yang, B. J. Mater. Chem. 2003, 13, 514.  

    8. [8]

      (8) Pol, V. G.; Gedanken, A.; Moreno, J. C. Chem. Mater. 2003, 15, 1111.  

    9. [9]

      (9) Cui, H. M.; Liu, H.;Wang, J. Y.; Li, X. F. H.; Boughton, R. I. J. Cryst. Growth 2004, 271, 456.  

    10. [10]

      (10) Pol, V. G.; Grisaru, H.; Gedanken, A. Langmuir 2005, 21, 3635.  

    11. [11]

      (11) Zhu,Y. J.; Qian, Y. T.; Li, X. J.; Zhang. M.W. Chem. Commun. 1997, No. 12, 1081.

    12. [12]

      (12) Wu, D. Z.; Ge, X.W.; Huang, Y. H.; Zhang, Z. C.; Ye, Q. Mater. Lett. 2003, 57, 3549.  

    13. [13]

      (13) Choi, S. H.; Zhang, Y. P.; palan, A.; Lee, K. P.; Kang, H. D. Colloids Surf. A 1987, 25, 155.  

    14. [14]

      (14) Cheng, D. M.; Zhou, X. D.; Xia, H. B.; Chan, H. S. O. Chem. Mater. 2005, 17, 3578.  

    15. [15]

      (15) Wang, P. H.; Pan, C. Y. Eur. Polym. J. 2000, 36, 2297.  

    16. [16]

      (16) Wang, P. H.; Pan, C. Y. Colloid Polym. Sci. 2002, 280, 152.  

    17. [17]

      (17) Tierno, P.; edel,W. A. J. Phys. Chem. B 2006, 110, 3043.  

    18. [18]

      (18) Xu, L. N.; Zhou, K. C.; Xu, H. F.; Zhang, H. Q.; Huang, L.; Liao, J. H.; Xun, A. Q.; Gu, N.; Shen, H. Y.; Liu, J. Z. Appl. Surf. Sci. 2001, 183, 58.  

    19. [19]

      (19) Dong, A. G.;Wang, Y. J.; Tang, Y.; Ren, N.; Yang,W. L.; Gao, Z. Chem. Commun. 2002, No. 4, 350.

    20. [20]

      (20) Zhang, J. H.; Liu, J. B.;Wang, S. Z.; Zhan, P.;Wang, Z. L.; Ming, N. B. Adv. Funct. Mater. 2004, 14, 1089.  

    21. [21]

      (21) Xia, H. Y.; Zhang, Y.; Peng, J. X.; Fang, Y.; Gu, Z. Z. Colloid Polym. Sci. 2006, 284, 1221.  

    22. [22]

      (22) Deng, Y. H.; Qi, D.W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. J. Am. Chem. Soc. 2008, 130, 28.  

    23. [23]

      (23) Zhang, J. G.; Xu, S. Q.; Kumacheva, E. Adv. Mater. 2005, 17, 2336.  

    24. [24]

      (24) Wang, G. Z.; Xia, H. Y.; Zhang, Y.; Peng, S. J. Acta Chim. Sin. 2007, 65, 2051.

    25. [25]

      [王公正, 夏慧芸, 张颖, 彭世杰. 化学学报, 2007, 65, 2051.]

    26. [26]

      (25) Suzuki, D.; Kawaguchi, H. Langmuir 2006, 22, 3818.  

    27. [27]

      (26) Bai, C. L.; Fang, Y.; Zhang, Y.; Chen, B. B. Langmuir 2004, 20, 263.  

    28. [28]

      (27) Fang, Y.; Bai, C. L.; Zhang, Y. Chem. Commun. 2004, No. 4,, 804.

    29. [29]

      (28) Wu, H. T.; Zhang, Y.; Ning, X. L.; Liang, H. L.; Fang, Y. Acta Phys. Chim. Sin. 2008, 24, 646.

    30. [30]

      [吴华涛, 张颖, 宁向莉, 梁红莲, 房喻, 物理化学学报, 2008, 24, 646.]

    31. [31]

      (29) Zhang, Y.; Xia, H. Y.; Xie, Y. X.;Wang, R. F.; Li. X. J. J. Colloid Interface Sci. 2006, 30, 210.

    32. [32]

      (30) Xia, H. Y.; Zhang, Y.; Sun, S.; Fang, Y. Colloid Polym. Sci. 2007, 285, 1655.  

    33. [33]

      (31) Dloczik, L.; K?nenkamp, R. Nano. Lett. 2003, 3, 651.  

    34. [34]

      (32) Mirkin, C. A.; Rogers, J. A. MRS Bull. 2001, 26, 506.  

    35. [35]

      (33) Dioczik, L.; Engelhardt, R.; Ernst, K.; Fiechter, S.; Sieber, I.; K?nenkamp, R. Appl. Phys. Lett. 2001, 78, 3687.  

    36. [36]

      (34) Jeong, U. Y.; Kim, J. U.; Xia, Y. N. Nano Lett. 2005, 5, 937.  

    37. [37]

      (35) Yin, Y. D.; Rioux, R. M.; Erdomez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.  

    38. [38]

      (36) Yang, J. H.; Qi, L. M.; Lu, C. H.; Ma, J. M.; Cheng, H. M. Angew Chem. Int. Edit. 2005, 44, 598.  

    39. [39]

      (37) Smigelskas, A. D.; Kirkendall, E. O. Trans. Am. Inst. Min. Metall. Pet. Eng. 1947, 171, 130.

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    9. [9]

      Qijin Mo Meifang Zhuo Zhiyi Zhong Chunfang Gan Lixia Zhang . Research-Oriented Experimental Teaching in Chemistry Education at Normal University: Taking the Project of Recovering Silver Nitrate from Silver-Containing Waste as an Example. University Chemistry, 2024, 39(6): 201-206. doi: 10.3866/PKU.DXHX202310099

    10. [10]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    11. [11]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    12. [12]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    16. [16]

      Siming Bian Sijie Luo Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    20. [20]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(871)
  • Abstract views(2435)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return