Citation: RAO Gui-Shi, CHENG Mei-Qin, ZHONG Yan, DENG Xiao-Cong, YI Fei, CHEN Zhi-Ren, ZHONG Qi-Ling, FAN Feng-Ru, REN Bin, TIAN Zhong-Qun. Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2373-2378. doi: 10.3866/PKU.WHXB20111008 shu

Preparation of High Catalytic Platinum Hollow Nanospheres and Their Electrocatalytic Performance for Methanol Oxidation

  • Received Date: 29 March 2011
    Available Online: 17 August 2011

    Fund Project: 国家自然科学基金(20663002) (20663002) 厦门大学固体表面物理化学国家重点实验室基金(200511) (200511)江西省自然科学基金(0620025)资助项目 (0620025)

  • Pt hollow nanospheres with a particle diameter of 110 nm and a shell thickness of about 5 nm were synthesized in bulk using selenium colloids with a particle diameter of 100 nm as a template. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), energy dispersive X-ray spectrocopy (EDX), and scanning electron microscopy (SEM) were used to determine their morphologies and structures. The electrocatalytic activity of the Pt hollow nanospheres modifying glassy carbon electrode toward methanol oxidation was measured by using methanol as the probe molecule. We show that the multiporous Pt hollow nanospheres composited of atomic clusters have a uniform particle size, od dispersity, a stable structure, a big surface area and od mass transfer performance. Cyclic voltammetry (CV) showed that when the current density of methanol oxidation was 0.10 mA·cm-2 and upon positive scanning the methanol oxidation potential of the Pt hollow nanospheres was around 110 and 64 mV negative than that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 51 and 13 mV negative than that of the latter two species, respectively. After 800 segments cyclic voltammetry scanning, upon positive scanning the peak current density of methanol oxidation on the Pt hollow nanospheres was found to be 13 and 15 times as high as that of the Pt solid nanoparticles and Pt black, respectively. Upon negative scanning the former species was about 19 and 38 times as high as that of the two latter species. Our experimental results show that the Pt hollow nanospheres have od electrocatalytic activity and stability toward methanol oxidation.
  • 加载中
    1. [1]

      (1) Kuver, A.;Wielstih,W. J. Power Sources 1998, 74, 211.  

    2. [2]

      (2) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.  

    3. [3]

      (3) Hogarth, M. P.; Ralph, T. R. Platinum Metals Rev. 2002, 46, 146.

    4. [4]

      (4) Ren, X.; Zelenay, P.; Thomas, S.; Davey, J.; ttesfeld, S. J. Power Sources 2000, 86, 111.  

    5. [5]

      (5) Witham, C. K.; Chun,W.; Valdez, T. I.; Narayanan, S. R. Electrochem. Solid State Lett. 2000, 3, 497.

    6. [6]

      (6) Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Science 1998, 280, 1735.  

    7. [7]

      (7) Cruickshank, J.; Scott, K. J. Power Source 1998, 70, 40.  

    8. [8]

      (8) Gurau, B.; Smotkin, E. S. J. Power Sources 2002, 112, 339.  

    9. [9]

      (9) Kauranen, P. S.; Skou, E. J. Electroanal. Chem. 1996, 408, 189.  

    10. [10]

      (10) Miyake, M.;Wainright, J. S.; Savinell, R. R. J. Electrochem. Soc. 2001, 148, A905.

    11. [11]

      (11) Hobson, L. J.; Nakano, Y.; Ozq, H.; Hayase, S. J. Power Sources 2002, 104, 79.  

    12. [12]

      (12) Mikhaylova, A. A.; Khazova, O. A. J. Electroanal. Chem. 2000, 225, 480.

    13. [13]

      (13) Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.  

    14. [14]

      (14) Nabika, H.; Deki, S. J. Phys. Chem. B 2003, 107, 9161.  

    15. [15]

      (15) Schmid, G. Clusters anc Colloids: From Theory to Application; VCH:Weinheim, 1994.

    16. [16]

      (16) Yu, A.; Liang, Z. J.; Cho, J. H.; Caruso, F. Nano Lett. 2003, 3, 1203.  

    17. [17]

      (17) Stamm, K. L.; Garno, J. C.; Liu, G. Y.; Brock, S. L. J. Am. Chem. Soc. 2003, 125, 4036.  

    18. [18]

      (18) Alivisatos, A. P. Science 1996, 271, 933.  

    19. [19]

      (19) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257.  

    20. [20]

      (20) Hu, J. T.; Odom, T.W.; Lieber, C. M. Accounts Chem. Res. 1999, 32, 435.  

    21. [21]

      (21) Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.  

    22. [22]

      (22) Hu, J. Q.; Zhang, Y.; Liu, B.; Liu, J. X.; Zhou, H. H.; Xu, Y. F.; Jiang, Y. X.; Yang, Z. L.; Tian, Z. Q. J. Am. Chem. Soc. 2004, 126, 9470.  

    23. [23]

      (23) Teng, X.W.; Black, D.;Watkins, N. J.; Gao, Y. L.; Yang, H. Nano Lett. 2003, 3, 261.  

    24. [24]

      (24) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732.  

    25. [25]

      (25) Zhang, B.; Li, J. F.; Zhong, Q. L.; Ren, B.; Tian, Z. Q.; Zou, S. Z. Langmuir 2005, 21, 7449.  

    26. [26]

      (26) Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364.  

    27. [27]

      (27) Guo, S. J.; Dong, S. J.;Wang, E. K. J. Phys Chem. C 2009, 113, 5485.  

    28. [28]

      (28) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  

    29. [29]

      (29) Sun, Y.; Xia, Y. Anal. Chem. 2002, 74, 5297.  

    30. [30]

      (30) Caruso, F. O. Chem. Eur. J. 2000, 6 (3), 413; Adv. Mater. 2001, 13 (1), 11.

    31. [31]

      (31) Liang, H. P.; Zhang, H. M.; Hu, J. S.; Guo, Y. G.;Wan, L. J.; Bai, C. L. Angew. Chem. Int. Edit. 2004, 43, 1540.  

    32. [32]

      (32) Chem, Z.W.;Waje, M.; Li,W. Z.; Yan, Y. S. Angew. Chem. 2007, 119, 4138.

    33. [33]

      (33) Iida, M.; Sasaki, T.;Watanabe, M. Chem. Mater. 1998, 10, 3780.  

    34. [34]

      (34) Liu, J. G.;Wilcox, D. L. J. Mater. Res. 1994, 10,84.

    35. [35]

      (35) Hotz, J.; Meier,W. Langmuir 1998, 14, 1031.  

    36. [36]

      (36) Fowler, C. E.; Khushalani, D. D.; Mann, S. Chem. Commun. 2001, 19, 2028.

    37. [37]

      (37) Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.  

    38. [38]

      (38) Xu, H. L.;Wang,W. Z. Angew. Chem. Int. Edit. 2007, 46, 1.  

    39. [39]

      (39) Wijnhoven, J. E. G.; Vos,W. L. Science 1998, 281, 802.  

    40. [40]

      (40) Caruso, F.; Caruso, R. A. Science 1998, 282, 1111.  

    41. [41]

      (41) Velev, O. D.; Kaler, E.W. Adv. Mater. 2000, 12, 531.  

    42. [42]

      (42) Kim, S.W.; Kim, M.; Lee,W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642.  

    43. [43]

      (43) Graf, C.; Blaaderen, A. Langmuir 2002, 18, 524.  

    44. [44]

      (44) Zhang, J. H.; Zhan, P.; Liu, H. Y.;Wang, Z. L.; Ming, N. B. Mater. Lett. 2006, 60, 280.  

    45. [45]

      (45) Sun, Y.; Mayers, B.T.; Xia, Y. Nano Lett. 2002, 2, 481.  

    46. [46]

      (46) Teranishi, H.; Hosoe, M.; Miyake, M. Adv. Mater. 1997, 9, 65.  

    47. [47]

      (47) Xia, Y.; Gates, B.; Yin, Y.; Lu. Y. Adv. Mater. 2000, 12, 693.  

    48. [48]

      (48) Yan, L. L.; Jiang, Q. N.; Liu, D. Y.; Zhong, Y.;Wen, F. P.; Deng, X. C.; Zhong, Q. L.; Ren, B.; Tian, Z. Q. Acta Phys. -Chim. Sin. 2010, 26 (9), 2337.

    49. [49]

      [颜亮亮, 江庆宁, 刘德宇, 钟艳, 温飞鹏, 邓小聪, 钟起玲, 任斌, 田中群. 物理化学学报, 2010, 26 (9), 2337.]

    50. [50]

      (49) Trasatti, S.; Petrii,O. A. Pure Appl. Chem. 1991, 63, 711.

    51. [51]

      (50) Sun, S. G.; Chen, A. C.; Huang, T. S.; Li, J. B.; Tian, Z.W. J. Electroanal. Chem.1992, 213, 340.

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    3. [3]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    4. [4]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    5. [5]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    8. [8]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    9. [9]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    10. [10]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    11. [11]

      Yufan Pan Xue Ding Jiayu Lin Haiting Wu Hairong Huang Cuixue Chen Meiling Ye . Oil Cosmetics, Charming Chemistry: A Gradient Science Popularization Scheme for Cream Cosmetic Preparation. University Chemistry, 2025, 40(4): 382-389. doi: 10.12461/PKU.DXHX202406078

    12. [12]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    13. [13]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    14. [14]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    15. [15]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    16. [16]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    17. [17]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(1642)
  • Abstract views(3129)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return