Citation: CUI Chao-Jie, QIAN Wei-Zhong, WEI Fei. Water-Assisted Growth of Carbon Nanotubes over Co/Mo/Al2O3 Catalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2462-2468. doi: 10.3866/PKU.WHXB20111007 shu

Water-Assisted Growth of Carbon Nanotubes over Co/Mo/Al2O3 Catalyst

  • Received Date: 13 May 2011
    Available Online: 16 August 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2011CB932602) (973) (2011CB932602)国家自然科学重点基金(20736007, 20736004)资助 (20736007, 20736004)

  • We studied the growth of carbon nanotubes (CNTs) over a Co/Mo/Al2O3 catalyst by decomposing ethylene with or without the assistance of water. The optimal amount of water was determined to be 0.6% (φ) since excess water removed the amorphous carbon around the catalysts and also directly etched the CNTs at high temperature. Under this condition, the yield of CNTs can be increased from 3.7 g·g-1, based on the mass of catalyst, to 70 g·g-1 within 1 h. The time-dependent online conversion of ethylene and the ratio of effective catalysts suggested that the effect of water is insignificant in the final growth period of the CNTs compared to that at the beginning. The correlation between the relative activity of the catalyst and the relative density of the CNT agglomerate suggests that the lack of growth volume inside the CNT agglomerate results in a gradual deactivation of the catalyst in the final CNT growth period. Raman characterization suggests that the degree of CNT defects increases with the bulk density of the CNT agglomerates since the mechanical resistance that is exposed on CNTs inside the agglomerate increases with reaction time. Thermal-gravimetric analysis indicates that the purity of CNTs ranges from 95.0% to 99.9% for a product with average purity of 99.2%. The non-uniform purity of the CNTs is due to the difference in mechanical resistance inside and outside the CNT agglomerate. The growth of CNTs outside the agglomerate is nearly free of mechanical resistance compared to that inside the agglomerate and, consequently, results in a high yield and high purity for the CNTs. These results suggest that it is necessary to control the agglomerate size and the structure, and to use a reactor with a large reactor volume for the growth of CNTs with low resistance and with high yield.
  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Zhou,W. Y.; Bai, X. D.;Wang, E. G.; Xie, S. S. Adv. Mater. 2009, 21, 4565.  

    3. [3]

      (3) Su, D. S.; Schlogl, R. ChemSusChem 2010, 3, 136.  

    4. [4]

      (4) Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Adv. Mater. 2010, 22, E28.

    5. [5]

      (5) Wei, F.; Zhang, Q.; Qian,W. Z.; Yu, H.;Wang, Y.; Luo, G. H.; Xu, G. H.;Wang, D. Z. Powder Technol. 2008, 183, 10.  

    6. [6]

      (6) Wang, M. Z.; Li, F.; Yang, Q. H.; Cheng, H. M. New Carbon Mater. 2003, 18, 250.

    7. [7]

      [王茂章, 李峰, 杨全红, 成会明. 新型碳材料, 2003, 18, 250.]

    8. [8]

      (7) Li, Y.; Zhang, X. Q.; Xu, J. M.; Tao, X. Y.; Chen, F.; Liu, F. J. Inorg. Mater. 2005, 20, 71.

    9. [9]

      [李昱, 张孝彬, 徐军明, 陶新永, 陈飞, 刘芙. 无机材料学报, 2005, 20, 71.]

    10. [10]

      (8) Qian,W. Z.; Tian, T.; Guo, C. Y.;Wen, Q.; Li, K. J.; Zhang, H. B.; Shi, H. B.;Wang, D. Z.; Liu, Y.; Zhang, Q.; Zhang, Y. X.; Wei, F.;Wang, Z.W.; Li, X. D.; Li, Y. D. J. Phys. Chem. C 2008, 112, 7588.  

    11. [11]

      (9) Patil, K. N.; Solanki, C. S. J. Nano Res. 2009, 6, 75.  

    12. [12]

      (10) Rashidi, A. M.; Akbarnejad, M. M.; Khodadadi, A. A.; Mortazavi, Y.; Ahmadpourd, A. Nanotechnology 2007, 18, 315605.  

    13. [13]

      (11) Xu, C. B.; Zhu, J. Nanotechnology 2004, 15, 1671.  

    14. [14]

      (12) Lim, S.; Li, N.; Fang, F.; Pinault, M.; Zoican, C.;Wang, C.; Fadel, T.; Pfefferle, L. D.; Haller, G. L. J. Phys. Chem. C 2008, 112, 12442.  

    15. [15]

      (13) Zhou, Q. M.;Wang, Y.; Tang, P. P.;Wu, X. M.; Lin, G. D.; Zhang, H. B. Chin. J. Appl. Chem. 2005, 22, 118.

    16. [16]

      [周金梅, 王毅, 汤培平, 武小满, 林国栋, 张鸿斌. 应用化学, 2005, 22, 118.]

    17. [17]

      (14) Liu, J. X.; Xie, Y. C. Acta Phys. -Chim. Sin. 2003, 22, 1093.

    18. [18]

      [刘霁欣, 谢有畅. 物理化学学报, 2003, 22, 1093.]

    19. [19]

      (15) Li, Y. D.; Li, D. X.;Wang, G.W. Catal. Today 2011, 162, 1.  

    20. [20]

      (16) Duan, X. J.; He, M. S.;Wang, X.; Zhang, J.; Liu, Z. F. Chin. Sci. Bull. 2004, 49, 377.

    21. [21]

      [段小洁, 何茂帅, 王璇, 张锦, 刘忠范. 科学通报, 2004, 49, 377.]

    22. [22]

      (17) Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.  

    23. [23]

      (18) Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.  

    24. [24]

      (19) Wen, Q.; Qian,W. Z.;Wei, F.; Liu, Y.; Ning, G. Q.; Zhang, Q. Chem. Mater. 2007, 19, 1226.  

    25. [25]

      (20) Wen, Q.; Zhang, R. F.; Qian,W. Z.;Wang, Y. R.; Tan, P. H.; Nie, J. Q.;Wei, F. Chem. Mater. 2010, 22, 1294.  

    26. [26]

      (21) Qian,W. Z.; Yu, H.;Wei, F.; Zhang, Q. F.;Wang, Z.W. Carbon 2002, 40, 2968.  

    27. [27]

      (22) Avdeeva, L. B.; ncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. M.; Nov rodov, B. N.; Shaikhutdinov, S. K. Appl. Catal. A-Gen. 1996, 141, 117.  

    28. [28]

      (23) Feng, C. Q.; Yao, Y. G.; Zhang, J.; Liu, Z. F. Nano Res. 2009, 2, 768.

    29. [29]

      (24) Cheng, H. M.; Li, F.; Sun, X.; Brown, S.; Pimenta, M. A.; Marucci, A.; Dresselhaus, G.; Dresselhaus, M. S. Chem. Phys. Lett. 1998, 289, 602.  

    30. [30]

      (25) Li,W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou,W. Y.; Zhao, R. A.;Wang, G. Science 1996, 274, 1701.  

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    5. [5]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    6. [6]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    12. [12]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    13. [13]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    16. [16]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    17. [17]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    18. [18]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    19. [19]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    20. [20]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

Metrics
  • PDF Downloads(1230)
  • Abstract views(3448)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return