Citation: XU Shou-Dong, ZHUANG Quan-Chao, SHI Yue-Li, ZHU Ya-Bo, QIU Xiang-Yun, SUN Zhi. Electrochemical Impedance Spectra of Intercalation Compound Electrodes: Models and Theoretical Simulations[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2353-2359. doi: 10.3866/PKU.WHXB20111004 shu

Electrochemical Impedance Spectra of Intercalation Compound Electrodes: Models and Theoretical Simulations

  • Received Date: 4 May 2011
    Available Online: 15 August 2011

    Fund Project: 中央高校基本科研业务费专项资金(2010LKHX03, 2010QNB04, 2010QNB05) (2010LKHX03, 2010QNB04, 2010QNB05) 中国矿业大学科技攀登计划(ON090237) (ON090237)江苏省自然科学研究基金(BK2008129)资助项目 (BK2008129)

  • Single intercalation particles, mixed particles, homogeneous porous electrodes and nonhomogeneous, multilayered porous electrode models are proposed in this paper. Some peculiar features of impedance spectra were simulated using the above-mentioned models. The results reveal that the features of impedance spectra of the single intercalation particle and the mixed particles are the same and the features consist of lithium ion migration through the solid electrolyte interphase (SEI) film (RSEICSEI semicircle), an electron and ion transfer process (RctCdl semicircle), and a finite-diffusion Warburg element. For the nonhomogeneous, multilayered porous electrodes model, a peculiar feature of impedance spectra is that a new arc appears in the Nyquist plot. A detailed analysis revealed that a different particle size distribution could lead to the appearance of a new arc and a different layer distribution (a thicker layer and a thinner layer), which could lead to a well-developed semicircle.
  • 加载中
    1. [1]

      (1) Zhuang, Q. C.;Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G. J. Phys. Chem. C 2010, 114, 8614.  

    2. [2]

      (2) Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, Y. L.; Fang, L.; Sun, S. G. Progress in Chemistry 2010, 22 (6), 1044.

    3. [3]

      [庄全超, 徐守冬, 邱祥云, 崔永丽, 方亮, 孙世刚. 化学进展, 2010, 22 (6), 1044.]

    4. [4]

      (3) Wei, T.; Zhuang, Q. C.;Wu, C.; Cui, Y. L.; Fang, L.; Sun, S. G. Acta Chim. Sin. 2010, 68 (15), 1481.

    5. [5]

      [魏涛, 庄全超, 崔永丽, 方亮, 孙世刚. 化学学报, 2010, 68 (15), 1481.]

    6. [6]

      (4) Qiu, X. Y.; Zhuang, Q. C.;Wang, H. M.; Cui, Y. L.; Fang, L.; Sun, S. G. Acta Phys. -Chim. Sin. 2010, 26 (6), 1499.

    7. [7]

      [邱祥云, 庄全超, 王红明, 崔永丽, 方亮, 孙世刚. 物理化学学报, 2010, 26 (6), 1499.]

    8. [8]

      (5) Song, J. Y.; Lee, H. H.;Wang, Y. Y.;Wan, C. C. J. Power Sources 2002, 111, 255.  

    9. [9]

      (6) Xu, M. M.; Dewald, H. D. Electrochim. Acta 2005, 50, 5473.  

    10. [10]

      (7) Levi, M. D.; Aurbach, D. J. Phys. Chem. B 2005, 109, 2763.  

    11. [11]

      (8) Meyers, J. P.; Doyle, M.; Darling, R. M.; Newman, J. J. Electrochem. Soc. 2000, 147 (8), 2930.  

    12. [12]

      (9) Doyle, M.; Meyers, J. P.; Newman, J. J. Electrochem. Soc. 2000, 147 (1), 99.  

    13. [13]

      (10) Devan, S.; Subramanianb, V. R.; White, R. E. J. Electrochem. Soc. 2004, 151 (6), A905.

    14. [14]

      (11) Sikha, G.; White, R. E. J. Electrochem. Soc. 2007, 154 (1), A43.

    15. [15]

      (12) Sikha, G.; White, R. E. J. Electrochem. Soc. 2008, 155 (12), A893.

    16. [16]

      (13) Dees, D.; Gunen, E.; Abraham, D.; Jansen, A.; Prakash, J. J. Electrochem. Soc. 2005, 152 (7), A1409.

    17. [17]

      (14) Huang, R.W. J. M.; Chung, F.; Kelder, E. M. J. Electrochem. Soc. 2006, 153 (8), A1459.

    18. [18]

      (15) Mantia, F. L.; Vetter, J.; Novák, P. Electrochim. Acta 2008, 53, 4109.  

    19. [19]

      (16) Andre, D.; Meiler, M.; Steiner, K.;Walz, H.; Soczka-Guth, T.; Sauer, D. U. J. Power Sources 2011, 196, 5349.  

    20. [20]

      (17) Lai,W.; Ciucci, F. Electrochim. Acta 2011, 56, 4369.  

    21. [21]

      (18) Schmidt, A. P.; Bitzer, M.; Imre, á.W.; Guzzella, L. J. Power Sources 2010, 195, 5071.  

    22. [22]

      (19) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; JohnWiley & Sons Inc.: New York, 2001; pp 92-116.

    23. [23]

      (20) Levi, M. D.; Aurbach, D. J. Phys. Chem. B 2004, 108, 11693.  

    24. [24]

      (21) Levi, M. D.; Aurbach, D. J. Power Sources 2005, 146, 727.  

    25. [25]

      (22) Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101, 4630.  

    26. [26]

      (23) Levi, M. D.;Wang, C.; Aurbach, D. J. Electroanal. Chem. 2004, 561, 1.  

    27. [27]

      (24) Itagaki, M.; Kobari, N.; Yotsuda, S.;Watanabe, K.; Kinoshita, S.; Ue, M. J. Power Sources 2004, 135, 255.  

    28. [28]

      (25) Sun, X. G.; Dai, S. J. Power Sources 2010, 195, 4266.  

    29. [29]

      (26) Diard, J. P.; Le rrec, B.; Montella, C. J. Electroanal. Chem. 2001, 499, 67.  

  • 加载中
    1. [1]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    2. [2]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Ying LiYushen ZhaoKai ChenXu LiuTingfeng YiLi-Feng Chen . Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305007-0. doi: 10.3866/PKU.WHXB202305007

    4. [4]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    7. [7]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    10. [10]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    11. [11]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    17. [17]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    19. [19]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    20. [20]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

Metrics
  • PDF Downloads(1290)
  • Abstract views(2944)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return