Citation: KONG Wei-Yuan, WANG Hai-Jun, GU Fang. Depletion Potential between Two Colloid Particles Immersed in a Hard-Core Yukawa Fluid[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2400-2405. doi: 10.3866/PKU.WHXB20111003 shu

Depletion Potential between Two Colloid Particles Immersed in a Hard-Core Yukawa Fluid

  • Received Date: 5 April 2011
    Available Online: 15 August 2011

    Fund Project: 国家自然科学基金(20873035)资助项目 (20873035)

  • The depletion potential between two colloid particles immersed in a hard-core Yukawa fluid was investigated by density functional theory for the depletion potential proposed by Roth, Evans, and Dietrich. An attempt was made to study the effects of several factors concerning the colloid particles and the solvent molecules on the depletion potential, which are the size ratio of the colloid particle to the solvent, the interaction between solvent molecules, the packing fraction of the solvent, and the interaction between the colloid particle and the solvent. By means of the depletion potential presented under various conditions, it is shown that the effects of these factors on the depletion potential are significant and this can provide some useful clues on regulating the interaction between colloid particles in related experiments.
  • 加载中
    1. [1]

      (1) Asakura, S.; Oosawa, F. J. Chem. Phys. 1954, 22, 1255.

    2. [2]

      (2) Dinsmore, A. D.;Wong, D. T.; Nelson, P.; Yodh, A. G. Phys. Rev. Lett. 1998, 80, 409.  

    3. [3]

      (3) Zaccarelli, E. J. Phys.: Condens. Matter 2007, 19, 323101.  

    4. [4]

      (4) Roth, R.; van Roij, R.; Andrienko, D.; Mecke, K. R.; Dietrich, S. Phys. Rev. Lett. 2002, 89, 088301.  

    5. [5]

      (5) Hiemenz, P. C.; Raja palan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker Inc: New York, 1997; pp 355-399, 575-621.

    6. [6]

      (6) Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications;Wiley-VCH: New York, 1999; pp 214-252.

    7. [7]

      (7) Crocker, J. C.; Matteo, J. A.; Dinsmore, A. D.; Yodh, A. G. Phys. Rev. Lett. 1999, 82, 4352.  

    8. [8]

      (8) G?tzelmann, B.; Evans, R.; Dietrich, S. Phys. Rev. E 1998, 57, 6785.  

    9. [9]

      (9) Dijkstra, M.; van Roij, R.; Evans, R. Phys. Rev. E 1999, 59, 5744.  

    10. [10]

      (10) Dijkstra, M.; van Roij, R.; Evans, R. J. Chem. Phys. 2000, 113, 4799.  

    11. [11]

      (11) Tuinier, R.; Vliegenthart, G. A.; Lekkerkerker, H. N.W. J. Chem. Phys. 2000, 113, 10768.  

    12. [12]

      (12) Patel, N.; E rov, S. A. J. Chem. Phys. 2004, 121, 4987.  

    13. [13]

      (13) Yang, S.; Yan, D.; Tan, H.; Shi, A. C. Phys. Rev. E 2006, 74, 041808.  

    14. [14]

      (14) Louis, A. A.; Bolhuis, P. G.; Meijer, E. J.; Hansen, J. P. J. Chem. Phys. 2002, 117, 1893.  

    15. [15]

      (15) Doxastakis, M.; Chen, Y. L.; de Pablo, J. J. J. Chem. Phys. 2005, 123, 034901.  

    16. [16]

      (16) Striolo, A.; Colina, C. M.; Gubbins, K. E.; Elvassore, N.; Lue, L. Mol. Simul. 2004, 30, 437.  

    17. [17]

      (17) Chen, X.; Cai, J.; Liu, H.; Hu, Y. Mol. Simul. 2006, 32, 877.  

    18. [18]

      (18) Biben, T.; Bladon, P.; Frenkel, D. J. Phys.: Condens. Matter 1996, 8, 10799.  

    19. [19]

      (19) Dickman, R.; Attard, P.; Simonian, V. J. Chem. Phys. 1997, 107, 205.  

    20. [20]

      (20) Li,W. H.; Ma, H. R. Phys. Rev. E 2002, 66, 061407.  

    21. [21]

      (21) Attard, P. J. Chem. Phys. 1989, 91, 3083.  

    22. [22]

      (22) Dzubiella J.; L?wen, H.; Likos, C. N. Phys. Rev. Lett. 2003, 91, 248301.  

    23. [23]

      (23) Zhou, S. Q. Chem. Phys. Lett. 2004, 392, 110.  

    24. [24]

      (24) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 315.  

    25. [25]

      (25) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 323.  

    26. [26]

      (26) von Grünberg, H. H.; Klein, R. J. Chem. Phys. 1999, 110, 5421.  

    27. [27]

      (27) Roth, R.; Evans, R.; Dietrich, S. Phys. Rev. E 2000, 62, 5360.  

    28. [28]

      (28) Melchionna, S.; Hansen, J. P. Phys. Chem. Chem. Phys. 2000, 2, 3465.

    29. [29]

      (29) ulding, D.; Melchionna, S. Phys. Rev. E 2001, 64, 011404.  

    30. [30]

      (30) Davoudi, B.; Kohandel, M.; Mohammadi, M.; Tanatar, B. Phys. Rev. E 2000, 62, 6977.  

    31. [31]

      (31) Fu, D.; Li, Y. G.;Wu, J. Z. Phys. Rev. E 2003, 68, 011403.

    32. [32]

      (32) Totsuji, H.; Kishimoto, T.; Totsuji, C. Phys. Rev. Lett. 1997, 78, 3113.  

    33. [33]

      (33) Ben-Naim, A. Molecular Theory of Water and Aqueous Solutions. Part I: Understanding Water;World Scientific Publishing: Singapore, 2009; pp 426-458.

    34. [34]

      (34) Evans, R. Adv . Phys. 1979, 28, 143.  

    35. [35]

      (35) Rosenfeld, Y. Phys. Rev. Lett. 1989, 63, 980.  

    36. [36]

      (36) Yu, Y. X.;Wu, J. Z. J. Chem. Phys. 2002, 117, 10156.  

    37. [37]

      (37) Tang, Y. P.;Wu, J. Z. Phys. Rev. E 2004, 70, 011201.  

    38. [38]

      (38) Tang, Y. P.; Lin, Y. Z.; Li, Y. G. J. Chem. Phys. 2005, 122, 184505.  

    39. [39]

      (39) Yang, Z.; Xu, Z. J.; Yang, X. N. Acta Phys. -Chim. Sin. 2006, 22 (12), 1460.

    40. [40]

      [杨振, 徐志军, 杨晓宁. 物理化学学报, 2006, 22 (12), 1460.]

    41. [41]

      (40) Roth, R.; Evans, R.; Lang, A.; Kahl, G. J. Phys.: Condens. Matter 2002, 14, 12063.  

    42. [42]

      (41) Tang, Y. P. J. Chem. Phys. 2004, 121, 10605.  

    43. [43]

      (42) You, F. Q.; Yu, Y. X.; Gao, G. H. J. Phys. Chem. B 2005, 109, 3512.  

    44. [44]

      (43) Yu, Y. X.; You, F. Q.; Tang, Y. P.; Gao, G. H.; Li, Y. G. J. Phys. Chem. B 2006, 110, 334.  

    45. [45]

      (44) You, F. Q.; Yu, Y. X.; Gao, G. H. J. Chem. Phys. 2005, 123, 114705.  

    46. [46]

      (45) Li,W. H.; Qiu, F. Chin. Phys. B 2010, 19, 108204.  

    47. [47]

      (46) Cinacchi, G.; Martínez-Ratón, Y.; Mederos, L.; Navascués, G.; Tani, A.; Velasco, E. J. Chem. Phys. 2007, 127, 214501.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    8. [8]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    9. [9]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    13. [13]

      Yunchao Li Shanying Chen Ke Qi Kangning Huo Shuxin Li Jingyi Li Ying Wei Louzhen Fan . A New Colloid Electrophoresis Experiment Incorporating Characteristics of Inquiry Learning and Ideological and Political Education. University Chemistry, 2024, 39(2): 47-51. doi: 10.3866/PKU.DXHX202308063

    14. [14]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    15. [15]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    16. [16]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    17. [17]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    18. [18]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    19. [19]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    20. [20]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

Metrics
  • PDF Downloads(963)
  • Abstract views(2644)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return