Citation: XUE Rong, YAN Jing-Wang, TIAN Ying, YI Bao-Lian. Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2340-2346. doi: 10.3866/PKU.WHXB20111002 shu

Lanthanum Doped Manganese Dioxide/Carbon Nanotube Composite Electrodes for Electrochemical Supercapacitors

  • Received Date: 24 February 2011
    Available Online: 15 August 2011

    Fund Project:

  • Although higher specific capacitances have been achieved for manganese dioxide/multi-walled carbon nanotubes (MnO2/MWCNTs), the low conductivity of MnO2 is still the main obstacle in increasing its loading or film thickness. Another problem is that the cycling stability of MnO2/MWCNTs is much lower than that of activated carbon electrodes. Therefore, this new type of electrode material is still limited in application until now. In this paper, lanthanum doped MnO2/MWCNTs composites were prepared by an in situ redox method. The surface morphology and phase structure of the as-prepared samples were investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscopy (EIS). The La-doped MnO2 could be formed on the MWCNTs by the reduction of MnO4-. The resistance of the composite electrodes decreased because La doping increases the number of imperfections in the MnO2 lattice, which improves the electrical conductivity and the electrochemical activity of the electrode. La doping is, therefore, an effective way to overcome the intrinsic low electric conductivity of MnO2, which facilitates an increase in the loading or the film thickness of MnO2 without increasing electrode resistance. The major effect of La doping is a significant improvement in the charge/discharge cycling performance of a symmetric electrochemical supercapacitor with electrodes composed of MnO2/ MWCNTs. The specific capacitance of the composite electrodes was improved by La doping.
  • 加载中
    1. [1]

      (1) Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Kluwer Academic/Plenum Publishers: New York, 1999.

    2. [2]

      (2) Burke, A. Electrochim. Acta 2007, 53, 1083.  

    3. [3]

      (3) Conway, B. E.; Pell,W. G. J. Solid State Electrochem. 2003, 7, 637.  

    4. [4]

      (4) Qu, D. Y.; Shi, H. J. Power Sources 1998, 74, 99.  

    5. [5]

      (5) Arabale, G.;Wagh, D.; Kulkarni, M.; Mulla, I. S.; Vernekar, S. P.; Vijayamohanan, K.; Rao, A. M. Chem. Phys. Lett. 2003, 376, 207.  

    6. [6]

      (6) Sharma, R. K.; Karakoti, A.; Seal, S.; Zhai, L. J. Power Sources 2010, 195, 1256.  

    7. [7]

      (7) Zein, S. H. S.; Yeoh, L. C.; Chai, S. P.; Mohamed, A. R.; Mahayuddin, M. E. M. J Mater. Process Technol. 2007, 190, 402.  

    8. [8]

      (8) Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, 3184.  

    9. [9]

      (9) Subramanian, V.; Zhu, H.W.;Wei, B. Q. Electrochem. Commun. 2006, 8, 827.  

    10. [10]

      (10) Shao, G. J.; Yao, Y.; Zhang, S. P.; He, P. Rare Metals 2009, 28, 132.  

    11. [11]

      (11) Man?i?, D.; Paunovi?, V.; Vijatovi?, M.; Stojanovi?, B.; ?ivkovi?, L. Science of Sintering 2008, 40, 283.  

    12. [12]

      (12) Ma, S. B.; Ahn, K. Y.; Lee, E. S.; Oh, K. H.; Kim, K. B. Carbon 2007, 45, 375.  

    13. [13]

      (13) Athou?l, L.; Moser, F.; Dugas, R.; Crosnier, O.; Bélanger, D.; Brousse, T. J. Phys. Chem. C 2008, 112, 7270.  

    14. [14]

      (14) Jin, X.; Zhou,W.; Zhang, S.; Chen, G. Z. Small 2007, 3, 1513.  

    15. [15]

      (15) Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. J. Am. Chem. Soc. 2003, 125, 9761.  

    16. [16]

      (16) Holzinger, M.; Vostrowsky, O.; Hirsch, A.; Hennrich, F.; Kappes, M.;Weiss, R.; Jellen, F. Angew Chem. Int. Edit. 2001, 40, 4002.  

    17. [17]

      (17) Kim, U. J.; Furtado, C. A.; Liu, X. M.; Chen, G. G.; Eklund, P. C. J. Am. Chem. Soc. 2005, 127, 15437.  

    18. [18]

      (18) Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates, J. T.; Liu, J.; Smalley, R. E. Chem. Phys. Lett. 2000, 321, 292.  

    19. [19]

      (19) Lu, K. L.; La , R. M.; Chen, Y. K.; Green, M. L. H.; Harris, P. J. F.; Tsang, S. C. Carbon 1996, 34, 814.  

    20. [20]

      (20) Xie, X. F.; Gao, L. Carbon 2007, 45, 2365.  

    21. [21]

      (21) White, A. M.; Slade, R. C. T. Electrochim. Acta 2004, 49, 861.  

    22. [22]

      (22) Masarapu, C.; Zeng, H. F.; Hung, K. H.;Wei, B. Q. ACS Nano 2009, 3, 2199.  

    23. [23]

      (23) Hu, C. C.;Wang, C. C. J. Electrochem. Soc. 2003, 150, A1079.

    24. [24]

      (24) Wu, M. S.; Chiang, P. C. J. Electrochemical and Solid State Letters 2004, 7, A123.

    25. [25]

      (25) Yan, J.; Fan, Z. J.;Wei, T.; Cheng, J.; Shao, B.;Wang, K.; Song, L. P.; Zhang, M. L. J. Power Sources 2009, 194, 1202.  

    26. [26]

      (26) Li, Y.; Xie, H. Q.;Wang, J. F.; Chen, L. F. Mater. Lett 2011, 65, 403.  

    27. [27]

      (27) Raymundo-Piñero, E.; Khomenko, V.; Frackowiak, E.; Béguin, F. J. Electrochem. Soc. 2005, 152, A229.

    28. [28]

      (28) Fang, D. L.;Wu, B. C.; Mao, A. Q.; Yan, Y.; Zheng, C. H. J. Alloy. Compd. 2010, 507, 526.  

    29. [29]

      (29) Wu, M.; Snook, G. A.; Chen, G. Z.; Fray, D. J. Electrochem. Commun. 2004, 6, 499.  

    30. [30]

      (30) Pourbaix, M. Atlas of electrochemical equilibria in aqueous solutions; National Association of Corrosion Engineers, 1974.

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    4. [4]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    8. [8]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    9. [9]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    10. [10]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    11. [11]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    14. [14]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    17. [17]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    18. [18]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    19. [19]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    20. [20]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

Metrics
  • PDF Downloads(1414)
  • Abstract views(2934)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return