Citation: CUI Bai, LIN Hong, ZHAO Xiao-Chong, LI Jian-Bao, LI Wen-Di. Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2411-2415. doi: 10.3866/PKU.WHXB20110937 shu

Visible Light Induced Photocatalytic Activity of ZnCo2O4 Nanoparticles

  • Received Date: 25 April 2011
    Available Online: 8 August 2011

    Fund Project: 国家自然科学基金(50572051, 50672041) (50572051, 50672041) 国家高技术研究发展计划项目(863) (2006AA03Z218) (863) (2006AA03Z218)国家重点基础研究发展规划项目(973)(2007CB607504)资助 (973)(2007CB607504)

  • ZnCo2O4 nanoparticles were synthesized by a co-precipitation decomposition method and their optical and photocatalytic properties were investigated. Their crystal structure and microstructures were characterized using X-ray diffraction (XRD), thermogravimetry (TG)/differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The ZnCo2O4 nanocrystallites obtained were single-phase with an average size of 10-20 nm. The optical bandgap energies of the nanoparticles were estimated to be 3.39 and 2.09 eV from the UV-Vis absorption spectrum. The ZnCo2O4 nanoparticles exhibited high photocatalytic activity for the degradation of methylene blue dye solution under visible light irradiation (λ>420 nm). The photocatalytic activity of the ZnCo2O4 nanoparticles is attributed to their ability to absorb bandgap photons under UV and visible light as well as their nanoscale particle size. Based on these experimental results, a possible band structure of ZnCo2O4 is proposed.
  • 加载中
    1. [1]

      (1) Cui, B.; Lin, H.; Li, J. B.; Li, X.; Yang, J.; Tao, J. Adv. Funct. Mater. 2008, 18, 1440.  

    2. [2]

      (2) Cui, B.; Lin, H.; Liu, Y.; Li, J.; Sun, P.; Zhao, X.; Liu, C. J. Phys. Chem. C 2009, 113, 14083.  

    3. [3]

      (3) Tang, J.; Zou, Z.; Ye, J. Chem. Mater. 2004, 16, 1644.  

    4. [4]

      (4) Chi, B.; Li, J.; Yang, X.; Lin, H.;Wang, N. Electrochim. Acta 2005, 50, 2059.  

    5. [5]

      (5) Takada, T.; Kasahara, S.; Omata, K.; Yamada, M. Nippon Kagaku Kaishi 1994, 9, 793.

    6. [6]

      (6) Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2855.  

    7. [7]

      (7) Ai, C.; Yin, M.;Wang, C.; Sun, J. J. Mater. Sci. 2004, 39, 1077.  

    8. [8]

      (8) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  

    9. [9]

      (9) Li, X.; Li, F. J. Phys. Chem. B 1999, 103, 4862.  

    10. [10]

      (10) Su, Y. L.; Li, Y.; Du, Y. X.; Lei, L. C. Acta Phys. -Chim. Sin. 2011, 27, 939.

    11. [11]

      [苏雅玲, 李轶, 杜瑛珣, 雷乐成. 物理化学学报, 2011, 27, 939.]

    12. [12]

      (11) Belhekar, A. A.; Awate, S. V.; Anand, R. Catal. Commun. 2002, 3, 453.  

    13. [13]

      (12) Min, S. X.;Wang, F.; Zhang, Z. M.; Han, Y. Q.; Feng, L. Acta Phys. -Chim. Sin. 2009, 25, 1303.

    14. [14]

      [敏世雄, 王芳, 张振敏, 韩玉琦, 冯雷. 物理化学学报, 2009, 25, 1303.]

    15. [15]

      (13) Tang, J.; Zou, Z.; Yin, J.; Ye, J. Chem. Phys. Lett. 2003, 382, 175.  

    16. [16]

      (14) Wang, D; Zou, Z.; Ye, J. Chem. Phys. Lett. 2003, 373, 191.  

    17. [17]

      (15) Valenzuela, M. A.; Bosch, P.; Jimenez-Becerrill, J.; Quiroz, O.; Paez, A. I. J. Photochem. Photobiol. A 2002, 148, 177.  

    18. [18]

      (16) Bessekhouad, Y.; Trari, M. Int. J. Hydrog. Energy 2002, 27, 357.  

    19. [19]

      (17) Wei, X.; Chen, D.; Tang,W. Mater. Chem. Phys. 2007, 103, 54.  

    20. [20]

      (18) Shi, J.; Cui, H.; Liang, Z.; Lu, X.; Tong, Y.; Su, C.; Liu, H. Energy Environ. Sci. 2011, 4, 466.  

    21. [21]

      (19) Chi, B.; Zhao, L.; Jin. T. J. Phys. Chem. C 2007, 111, 6189.  

    22. [22]

      (20) Bazuev, G. V.; Gyrdasova, O. I.; Gri rov, I. G.; Koryakova, O. V. Inorg. Mater. 2005, 41, 288.  

    23. [23]

      (21) Wang, X.; Chen, X. Y.; Gao, L. S.; Zheng, H. G.; Zhang, Z. D.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 16401.  

    24. [24]

      (22) Kubelka, P.; Munk, F. Z. Tech. Phys. (Leipzig) 1931, 12, 593.

    25. [25]

      (23) Radaelli, P. G. New J. Phys. 2005, 7, 53.  

    26. [26]

      (24) Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.  

    27. [27]

      (25) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.

    28. [28]

      [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    29. [29]

      (26) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.  

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    11. [11]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

Metrics
  • PDF Downloads(2046)
  • Abstract views(3949)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return