Citation: GAO Wen-Chao, HUANG Tao, SHEN Yu-Dong, YU Ai-Shui. Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2129-2134. doi: 10.3866/PKU.WHXB20110933 shu

Phenolic Resin Coated Natural Graphite Oxide as an Anode Material for Lithium Ion Batteries

  • Received Date: 13 May 2011
    Available Online: 29 July 2011

    Fund Project: 上海市基础研究重点项目(10JC1401500) (10JC1401500)上海市分子催化和功能材料重点实验室(08DZ2270500)资助 (08DZ2270500)

  • A core-shell structure of the carbon-coated natural graphite oxide composite was successfully prepared. Natural graphite was initially oxidized using concentrated sulfuric acid and then carbon coated by the carbonization of phenolic resin at high temperature. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman techniques were used to characterize the morphology and structure of the natural graphite materials before and after oxidation and carbon coating by the pyrolysis of the phenolic resin. The results showed that the surface of the natural graphite particles became smoother and the surface defects were effectively modified after oxidation and carbon coating. The electrochemical test results showed that the electrochemical performance of the natural graphite improved significantly by oxidation with sulfuric acid and by carbon coating. When the covering amount of phenolic resin was 9% the modified natural graphite material gave the best electrochemical performance. Its initial discharge capacity was 434.0 mAh·g-1 and it remained 361.6 mAh· g-1 after 40 charge-discharge cycles. The discharge capacity of the untreated natural graphite was only 332.3 mAh·g-1. The modification approach that improved the capacity of the natural graphite effectively is of great significance for the application of natural graphite in lithium ion batteries.
  • 加载中
    1. [1]

      (1) Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526.  

    2. [2]

      (2) Whittingham, M. S. Chem. Rev. 2004, 104 (10), 4271.

    3. [3]

      (3) Li, F. Q.; Lai, Y. Q.; Zhang, Z. A.; Gao, H. Q.; Yang, J. Acta Phys. -Chim. Sin. 2008, 24, 1302. [李凡群, 赖延清, 张治安, 高宏权, 杨娟. 物理化学学报, 2008, 24, 1302.]

    4. [4]

      (4) Zhao, H. P.; Ren, J. G.; He, X. M.; Li, J. J.; Jiang, C. Y.;Wan, C. R. Electrochim. Acta 2007, 52, 6006.  

    5. [5]

      (5) Yoshio, M.;Wang, H.; Fukuda, K.; Hara, Y.; Adachi, Y. J. Electrochem. Soc. 2000, 147, 1245.  

    6. [6]

      (6) Mao,W. Q.;Wang, J. M.; Xu, Z. H.; Niu, Z. X.; Zhang, J. Q. Electrochem. Commun. 2006, 8, 1326.  

    7. [7]

      (7) Menachem, C.;Wang, Y.; Floners, J.; Peled, E.; Greenbaum, S. G. J. Power Sources 1998, 76, 180.  

    8. [8]

      (8) Chen, J. T.; Zhou, H. H.; Chang,W. B.; Ci, Y. X. Acta Phys. -Chim. Sin. 2002, 18, 180. [陈继涛, 周恒辉, 常文保, 慈云祥. 物理化学学报, 2002, 18, 180.]

    9. [9]

      (9) Zhang, H. L.; Li, F.; Liu, C. J. Phys. Chem. C 2008, 112, 7767.  

    10. [10]

      (10) Choi,W. C.; Byun, D. J.; Lee, J. K.; Cho, B.W. Electrochim. Acta 2004, 50, 523.  

    11. [11]

      (11) Takamura, T. Bull. Chem. Soc. Jpn. 2002, 75, 21.  

    12. [12]

      (12) Tossici, R.; Berrettoni, M.; Rosolen, M. J. Eletrochem. Soc. 1997, 144, 186.  

    13. [13]

      (13) Tanaka, U.; Sogabe, T.; Saka shi, H.; Tojo, T. Carbon 2001, 39, 931.  

    14. [14]

      (14) Guo, K. K.; Pan, Q. M.; Fan, S. B. J. Power Sources 2002, 111, 350.  

    15. [15]

      (15) Yu, Z. H.;Wu, F. Battery Bimonthly 2003, 33, 131. [俞政洪, 吴锋. 电池, 2003, 33, 131.]

    16. [16]

      (16) Tuistra, F.; Koeing, J. L. J. Compos. Mater. 1970, 4, 492.

    17. [17]

      (17) Tsumura, T.; Katanosaka, A.; Souma, I. Solid State Ionics 2000, 135, 209.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    3. [3]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    4. [4]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    5. [5]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    6. [6]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    17. [17]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    18. [18]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    19. [19]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(1662)
  • Abstract views(4839)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return