Citation: YAN Shi, HUANG Qin-Dong, LIN Jing-Dong, YUAN You-Zhu, LIAO Dai-Wei. Photocatalytic Activity of Cobalt Doped Titania for H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2406-2410. doi: 10.3866/PKU.WHXB20110929 shu

Photocatalytic Activity of Cobalt Doped Titania for H2 Evolution

  • Received Date: 1 April 2011
    Available Online: 26 July 2011

    Fund Project: 国家重点基础研究发展规划项目(973)(2011CBA00508)资助 (973)(2011CBA00508)

  • Cobalt-doped titania (Co/TiO2) photocatalysts were synthesized by the polymerized complex method (PCM). The materials were characterized by thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nitrogen adsorption-desorption, ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the samples was evaluated by hydrogen evolution. The results show that anatase type titania exists in the materials and cobalt is evenly dispersed. The activity of the cobalt doped titania was found to be superior to that of pure titania. The maximum activity obtained at 0.3% Co/Ti molar ratio was nearly 6 times as high as that of pure titania. The amount of hydrogen produced was up to 2499 μmol. The doping mechanism of cobalt is discussed.
  • 加载中
    1. [1]

      (1) Lewis, N.; Nocera, D. Proc. Natl. Acad. Sci. U. S. A. 2006, 113, 15729.

    2. [2]

      (2) Fox, M.; Dulay, M. Chem. Rev. 1993, 93, 341.  

    3. [3]

      (3) Kamat, P. J. Phys. Chem. C 2007, 111, 2834.  

    4. [4]

      (4) Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.  

    5. [5]

      (5) Osterloh, F. Chem. Mater. 2008, 20, 35.  

    6. [6]

      (6) Fujishima, A.; Honda, K. Nature 1972, 238, 37.  

    7. [7]

      (7) Hoffmann, M.; Martin, S.; Choi,W. Y.; Bahnemannt, D. Chem. Rev. 1995, 95, 69.  

    8. [8]

      (8) Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K. Renew. Sust. Energ. Rev. 2007, 11, 401.  

    9. [9]

      (9) Liang,W. P.; Yang, J. L.; Chen, Y. J.; Li, C. Physical Chemistry in the New Century; Science Press: Beijing, 2004; pp 148-153.

    10. [10]

      [梁文平, 杨俊林, 陈拥军, 李灿. 新世纪的物理化学. 北京: 科学出版社, 2004: 148-153.]

    11. [11]

      (10) Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science 2001, 293, 269.  

    12. [12]

      (11) Yu, Z. Y.; Zhang,W.; Ma, M.; Cui, X. L. Acta Phys. -Chim. Sin. 2009, 25, 35.

    13. [13]

      [余志勇, 张维, 马明, 崔晓莉. 物理化学学报, 2009, 25, 35.]

    14. [14]

      (12) Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Appl. Phys. Lett. 2002, 81, 454.  

    15. [15]

      (13) Jing, D.W.; Guo, L. J. J. Phys. Chem. Solids 2007, 68, 2363.  

    16. [16]

      (14) Kakihana, M.; Yoshimura, M. B. Chem. Soc. Jpn. 1999, 72, 1427.  

    17. [17]

      (15) Lin, H. Y.; Chang, Y. S. Int. J. Hydrogen Energ. 2010, 35, 8463.  

    18. [18]

      (16) Hu, C. C.; Teng, H. J. Catal. 2010, 272, 1.  

    19. [19]

      (17) Wu, Y. Q.; Lu, G. X.; Li, S. B. Chin. J. Inorg. Chem. 2005, 21, 309.

    20. [20]

      [吴玉琪, 吕功煊, 李树本. 无机化学学报, 2005, 21, 309.]

    21. [21]

      (18) Bascha, A.; Alberingb, J. J. Power Sources 2011, 196, 3290.  

    22. [22]

      (19) Dvoranova, D.; Brezova, V.; Mazur, M.; Malati, M. Appl. Catal. B -Environ. 2002, 37, 91.  

    23. [23]

      (20) Wu, S. X.; Ma, Z.; Qin, Y. N.; Qi, X. Z.; Liang, Z. C. Acta Phys. -Chim. Sin. 2004, 20, 138.

    24. [24]

      [吴树新, 马智, 秦永宁, 齐晓周, 梁珍成. 物理化学学报, 2004, 20, 138.]

    25. [25]

      (21) Choi,W. Y.; Termin, A.; Hoffmann, M. J. Phys. Chem. 1994, 98, 13669.  

    26. [26]

      (22) Soria, J.; Conesa, J.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Sclafani, A. J. Phys. Chem. 1991, 95, 274.

    27. [27]

      (23) Gratzel, M.; Howe, R. J. Phys. Chem. 1990, 94, 2566.  

  • 加载中
    1. [1]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    2. [2]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    3. [3]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    10. [10]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    11. [11]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    15. [15]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    16. [16]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    19. [19]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    20. [20]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

Metrics
  • PDF Downloads(1360)
  • Abstract views(3172)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return