Citation: LU Sheng-Yong, HUANG Yi-Long, WANG Qiu-Lin, LI Xiao-Dong, YAN Jian-Hua. Photocatalytic Degradation of Gaseous 1,2-Dichlorobenzene over TiO2/AC Photocatalysts[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2191-2199. doi: 10.3866/PKU.WHXB20110924 shu

Photocatalytic Degradation of Gaseous 1,2-Dichlorobenzene over TiO2/AC Photocatalysts

  • Received Date: 10 May 2011
    Available Online: 15 July 2011

    Fund Project: 国家重点基础研究发展计划项目(2011CB201500) (2011CB201500) 国家科技支撑计划项目(2007BAC27B04-4) (2007BAC27B04-4)水体污染控制与治理科技重大专项课题(2009ZX07317-003)资助 (2009ZX07317-003)

  • Using commercially available activated carbon (AC) as a carrier, photocatalysts of activated carbon-supported TiO2 (TiO2/AC) with different specific surface areas and TiO2 loading contents were prepared by the sol-gel method. Nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to obtain the performance parameters of the TiO2/AC catalysts. The photocatalytic performance of the TiO2/AC catalysts was studied by using gaseous 1,2-dichlorobenzene. The influence of catalyst dose, specific surface area, and gaseous 1,2-dichlorobenzene concentration on this photodegradation was investigated. The results show that a nano-TiO2 deposit was formed with a particle size of approximately 10 nm. The loading of TiO2 onto the AC with a large specific surface area enhanced the photocatalytic activity of TiO2 photocatalysis with regard to the degradation of gaseous 1,2- dichlorobenzene. We show that TiO2/AC catalysts have a synergetic effect on AC adsorption and TiO2 photocatalysis during the degradation of gaseous 1,2-dichlorobenzene by comparing the photocatalytic performance of a commercial P25 catalyst and TiO2/AC catalysts.
  • 加载中
    1. [1]

      (1) Lu, S. Y.;Wu, D.;Wang, Q. L.; Yan, J. H.; Buekens, A. G.; Cen, K. F. Chemosphere 2011, 82 (9), 1215.

    2. [2]

      (2) Yu, J. G.; Zhao, X. J.; Zhao, Q. N. Thin Solid Films 2000, 379 (1-2), 7.

    3. [3]

      (3) Huang, H. H.; Tseng, D. H.; Juang, L. C. Journal of Hazarous Materials 2008, 156 (1-3), 186.

    4. [4]

      (4) Joung, S. K.; Amemiya, T.; Murabayashi, M.; Itoh, K. Applied Catalysis A: General 2006, 312, 20.  

    5. [5]

      (5) Liu, S. X.; Chen, X. Y. Acta Phys. -Chim. Sin. 2008, 24, 533. [刘守新, 陈孝云. 物理化学学报, 2008, 24, 533.]

    6. [6]

      (6) Li, C. P.; Zhao, R. H.; Guo, F.; Chen, J. F. Acta Phys. -Chim. Sin. 2007, 23, 157. [李翠平, 赵瑞红, 郭奋, 陈建峰. 物理化学学报, 2007, 23, 157.]

    7. [7]

      (7) Xu, X.;Wang, X. J.; Hu, Z. H.; Liu, Y. F.;Wang, C. C.; Zhao, G. H. Acta Phys. -Chim. Sin. 2010, 26, 79. [徐鑫, 王晓静, 胡中华, 刘亚菲, 王晨晨, 赵国华. 物理化学学报, 2010, 26, 79.]

    8. [8]

      (8) Zhang, X.W.; Lei, L. C. Journal of Hazarous Materials 2008, 153 (1-2), 827.

    9. [9]

      (9) Wang, X. J.; Hu, Z. H.; Chen, Y. J.; Zhao, G. H.; Liu, Y. F.;Wen, Z. B. Applied Surface Science 2009, 255 (7), 3953.

    10. [10]

      (10) Chen, Y. J.; Hu, Z. H.;Wang, X. J.; Zhao, G. H.; Liu, Y. F.; Liu, W. Acta Phys. -Chim. Sin. 2008, 24, 1589. [陈玉娟, 胡中华, 王晓静, 赵国华, 刘亚菲, 刘巍. 物理化学学报, 2008, 24, 1589.]

    11. [11]

      (11) Choi,W.; Hong, S. J.; Chang, Y. S.; Cho, Y. Environmental Science and Technology 2000, 34, 4810.  

    12. [12]

      (12) Chiang, Y. C.; Chaing, P. C.; Huang, C. P. Carbon 2001, 39 (4), 523.

    13. [13]

      (13) Matos, J.; Laine, J.; Herrmann, J. M. Applied Catalysis BEnvironmental 1998, 18 (3-4), 281.

    14. [14]

      (14) Czaplicka, M. Journal of Hazarous Materials 2006, 134 (1-3), 45.

    15. [15]

      (15) Gratzel, M.; Frank, A. J. Journal of Physical Chemistry 1982, 86 (15), 2964.

    16. [16]

      (16) Subramani, A. K.; Byrappa, K.; Ananda, S.; Rai, K.; Ranganathaiah, C.; Yoshimura, M. Bulletin of Materials Science 2007, 30 (1), 37.

    17. [17]

      (17) Huang, Z. H.; Xu, D. P.; Kang, F. Y.; Hao, J. M. New Carbon Material 2004, 19 (3), 229. [黄正宏, 许德平, 康飞宇, 郝吉明. 新型炭材料, 2004, 19 (3), 229.]

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    3. [3]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    4. [4]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    5. [5]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    6. [6]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    7. [7]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    10. [10]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Zhinan GUOJunli WANGQiang ZHAOZhifang JIAZuopeng LIKewei WANGYong GUO . Cu2O/Bi2CrO6 Z-scheme heterojunction: Construction and photocatalytic degradation properties for tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 741-752. doi: 10.11862/CJIC.20240403

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    20. [20]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

Metrics
  • PDF Downloads(1512)
  • Abstract views(2380)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return