Citation: LIU Jiao, YAO Ping, NI Zhe-Ming, LI Yuan, SHI Wei. Jahn-Teller Effect of Cu-Mg-Al Layered Double Hydroxides[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2088-2094. doi: 10.3866/PKU.WHXB20110923 shu

Jahn-Teller Effect of Cu-Mg-Al Layered Double Hydroxides

  • Received Date: 9 May 2011
    Available Online: 15 July 2011

  • We propose a periodic interaction model for the layered double hydroxides, CuxMg3-xAl-LDHs (x=0-3). Based on density functional theory, the geometries of CuxMg3-xAl-LDHs(x=0-3) were optimized using the CASTEP program. The Jahn-Teller effect and the stability were investigated by analyzing the geometric parameters, electronic arrangement, hydrogen-bonding, charge populations, and binding energies. The results show that the Jahn-Teller effect exists in the unfilled Cu2+ d orbital and also exists in the unfilled Mg2+ p orbital. The two orbitals affect the Jahn-Teller distortion of the metal ions. In CuxMg3-xAl-LDHs(x=0-3), both aluminum and magnesium exist in stabilized octahedral forms. With an increase of Cu2+ in the layer the octahedral of copper changes from a flat configuration to a stable elongated configuration and the Jahn-Teller stabilization energy of the system gradually increases. In general, with an increase of Cu2+ in the layer the distortion caused by the Jahn-Teller effect weakens hydrogen-bonding and the electrostatic interactions between the host layer and the guest. The absolute value of the binding energy decreases and the chemical stability of the system decreases as well. This allows us to theoretically understand the Jahn-Teller effect better for the synthesis of copper-containing LDHs.
  • 加载中
    1. [1]

      (1) Kovanda, F.; Jirátová, K.; Rymes, J.; Kolousek, D. Appl. Clay Sci. 2001, 18, 71.  

    2. [2]

      (2) Centi, G.; Fornasari, G.; bbi, C.; Livi, M.; Trifiro, F.; Vaccari, A. Catal. Today 2002, 73, 287.  

    3. [3]

      (3) Busca, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Patrono, P.; Pinzari, F.; Ramis, G. Appl. Catal. A-Gen. 2006, 310, 70.  

    4. [4]

      (4) Xie, X. M.; An, X.; Yan, K.;Wu, X.; Song, J. L.;Wang, Z. Z. J. Nat. Gas Chem. 2010, 19, 77.  

    5. [5]

      (5) Liu, H. B.; Jiao, Q. Z.; Zhao, Y.; Li, H. S.; Sun, C. B.; Li, X. F.; Wu, H. Y. Mater. Lett. 2010, 64, 1698.  

    6. [6]

      (6) Bridier, B.; Lopez, N.; Perez-Ramirez, J. J. Catal. 2010, 269, 80.  

    7. [7]

      (7) Bridier, B.; Hevia, M. A. G.; Lopez, N.; Perez-Ramirez, J. J. Catal. 2011, 278, 167.  

    8. [8]

      (8) Velu, S.; Swamy, C. S. Appl. Catal. A-Gen. 1996, 145, 141.  

    9. [9]

      (9) Velu, S.; Suzuki, K.; Osaki, T. Catal. Lett. 1999, 62, 159.  

    10. [10]

      (10) Morpur , S.; Jacono, M. L.; Porta, P. J. Solid State Chem. 1996, 122, 324.  

    11. [11]

      (11) Lu, R. Q.; Zhang, N. N. J. Nat. Gas Chem. 2010, 19, 179.  

    12. [12]

      (12) Yan, H.; Lu, J.;Wei, M.; Ma, J.; Li, H.; He, J.; Evans, D. G.; Duan, X. J. Mol . Struct . -Theochem 2008, 866, 34.  

    13. [13]

      (13) Becke, A. D. Chem. Phys. 1993, 98, 5648.

    14. [14]

      (14) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    15. [15]

      (15) Yan, H.;Wei, M.; Ma, J.; Li, F.; Evans, D. G.; Duan, X. J. Chem. Phys. A 2009, 113, 6133.  

    16. [16]

      (16) Vanderbilt, D. Phys . Rev . B 1990, 41, 7892.  

    17. [17]

      (17) Xu, Q.; Ni, Z. M.; Pan, G. X.; Chen, L. T.; Liu, T. Acta Phys. -Chim. Sin. 2008, 24, 601. [胥倩, 倪哲明, 潘国祥, 陈丽涛, 刘婷. 物理化学学报, 2008, 24, 601.]  

    18. [18]

      (18) Xu, Q.; Ni, Z. M.; Mao, J. H. J. Mol. Struct . -Theochem 2009, 915, 122.  

    19. [19]

      (19) Yan, H.;Wei,W.; Ma, J.; Evans, D. G.; Duan, X. J. Phys. Chem. A 2010, 114, 7369.  

    20. [20]

      (20) Ni, Z. M.; Yao, P.; Liu, X. M.;Wang, Q. Q.; Xu, Q. Chem . J . Chin . Univ. 2010, 31, 2438. [倪哲明, 姚萍, 刘晓明, 王巧巧, 胥倩. 高等学校化学学报, 2010, 31, 2438.]

    21. [21]

      (21) Liu, Y. H.; Guo, Y. H.;Wu, J. Y.; Liu, L. Y.; He, J.; Chen, B. H.; Pu, M. Chem. J. Chin. Univ. 2008, 29, l171. [刘亚辉, 郭玉华, 吴静怡, 刘灵燕, 何静, 陈标华, 蒲敏. 高等学校化学学报, 2008, 29, l171.]

    22. [22]

      (22) Luo, Q. S.; Li, L.;Wang, Z. X.; Duan, X. Chin. J. Inorg. Chem. 2001, 17, 835. [罗青松, 李蕾, 王作新, 段雪. 无机化学学报, 2001, 17, 835.]

    23. [23]

      (23) Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.  

    24. [24]

      (24) Yao, P.; Ni, Z. M.; Xu, Q.; Mao, J. H.; Liu, X. M.;Wang, Q. Q. Acta . Phys. -Chim. Sin. 2010, 26, 175. [姚萍, 倪哲明, 胥倩, 毛江洪, 刘晓明, 王巧巧. 物理化学学报, 2010, 26, 175.]

    25. [25]

      (25) Segall, M. D.; Linda, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M. J . Phys . -Condes . Matter 2002, 14, 2717.  

    26. [26]

      (26) Ceperley, D. M.; Aider, B. J. Phys. Rev. Lett. 1980, 45, 566.  

    27. [27]

      (27) Kresse, G.; Furthmiiller, J. Phys. Rev. B 1996, 54, 11169.  

    28. [28]

      (28) Duan, X.; Zhang, F. Z. Assembly and Function of Intercalative Materials; Chemical Industry Press: Beijing, 2007; p 93. [段雪, 张法智. 插层组装与功能材料. 北京: 化学工业出版社, 2007: 93.]

    29. [29]

      (29) Pan, D. K.; Zhao, C. D.; Zheng, Z. X. The Structure of Matter; Higher Education Press: Beijing, 1989; pp 329-330. [潘道皑, 赵成大, 郑载兴. 物质结构. 北京: 高等教育出版社, 1989: 329-330.]

    30. [30]

      (30) Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    16. [16]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    17. [17]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    18. [18]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    19. [19]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    20. [20]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

Metrics
  • PDF Downloads(1289)
  • Abstract views(3880)
  • HTML views(246)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return