Citation: DANG Dai, GAO Hai-Li, PENG Liang-Jin, SU Yun-Lan, LIAO Shi-Jun, WANG Ye. Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2379-2384. doi: 10.3866/PKU.WHXB20110922 shu

Preparation of High Performance Core-Shell PdRu@Pt/CNT Electrocatalyst

  • Received Date: 25 April 2011
    Available Online: 15 July 2011

    Fund Project: 全国大学生创新项目(081056118) (081056118)国家自然科学基金(20673040, 20876062, 21076089)资助 (20673040, 20876062, 21076089)

  • We prepared a low Pt loading core-shell structured catalyst PdRu@Pt/CNT (carbon nanotube) with a PdRu alloy as the core and platinum as the shell in addition to carbon nanotubes as supports in a two-stage precipitation-reduction approach. For the anodic oxidation of methanol the activity in terms of Pt loading increased by 70% compared with the lab-made Pt/CNT catalyst and the ratio of the forward current density (If) to the backward current density (Ib) was as high as 2, which is two times of that of Pt/ CNT, indicating that the dispersion and use of platinum effectively improves by covering the surface of the PdRu cores with platinum. Excellent tolerance towards the intermediates of the anodic oxidation of methanol may result from the interaction between the Pt shell and the PdRu core. The core-shell structure of the catalysts was revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM image showed that the active components are highly dispersed on the CNT with a particle size of 4.0 nm. The high platinum utilization and high performance as well as od tolerance toward poisons make the PdRu@Pt/CNT catalyst a promising low-Pt catalyst for low temperature fuel cell applications.
  • 加载中
    1. [1]

      (1) Baldauf, M.; Preidel,W. J. Power Sources 1999, 84, 161.  

    2. [2]

      (2) Luo, Y. L.; Liang, Z. X.; Liao, S. J. Chin. J. Catal. 2010, 31, 141.

    3. [3]

      [罗远来, 梁振兴, 廖世军. 催化学报, 2010, 31, 141.]

    4. [4]

      (3) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.; Wilkinson, D. P. J. Power Sources. 2006, 155, 95.  

    5. [5]

      (4) Cha, Q. X. Selected Topics of Electrochemical pPower Sources; Wuhan University Press:Wuhan, 2005; pp 1-150.

    6. [6]

      [查全性. 化学电源选论. 武汉: 武汉大学出版社, 2005: 1-150.]

    7. [7]

      (5) Chen, M.; Liao. S. J. Industrial Catalysis. 2008, No. 3, 1.

    8. [8]

      [谌敏, 廖世军. 工业催化, 2008, (3), 1]

    9. [9]

      (6) Murray, E. P.; Tsai, T.; Barnett. S. A. Nature 1999, 400, 649.  

    10. [10]

      (7) Fernández, J. L.; Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Am. Chem. Soc. 2005, 127, 13100.  

    11. [11]

      (8) Shao, M. H.; Sasaki, K.; Adzic, R. R. J. Am. Chem. Soc. 2006, 128, 3526.  

    12. [12]

      (9) Lee, K.; Zhang, L.; Zhang, J. J. Electrochem. Commun. 2007, 9, 1704.  

    13. [13]

      (10) Wang, X.; Tang, Y.; Gao, Y.; Lu, Y. H. J. Power Sources 2008, 175, 784.  

    14. [14]

      (11) Shen, P. K.; Xu, C.W. Electrochem. Commun. 2006, 8, 184.  

    15. [15]

      (12) Nie, M.; Tang, H. L.;Wei, Z. D.; Jiang, S. P.; Shen, P. K. Electrochem. Commun. 2007, 9, 2375.  

    16. [16]

      (13) Sun, X. M.; Li, Y. D. Angew Chem. Int. Edit. 2004, 43, 597.  

    17. [17]

      (14) Zhou,W. J.; Lee, J. Y. Electrochem.Commun. 2007, 9, 1725.  

    18. [18]

      (15) Luo, J.;Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I. I. S.; Zhong, C. J. Adv. Mater. 2008, 20, 4342.  

    19. [19]

      (16) Wang H.; Xu, C.W.; Cheng, F. L.; Zhang, M.;Wang, S. Y.; Jiang, S. P. Electrochem Commun. 2008, 10, 1575.  

    20. [20]

      (17) Wu, Y. N.; Liao, S. J.; Liang, Z. X.; Yang, L. J.;Wang, R. F. J. Power Sources 2009, 194, 805.  

    21. [21]

      (18) Nilekar, A. U.; Alayoglu, S.; Eichhorn, B; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418.  

    22. [22]

      (19) Guo, S. J.; Fang, Y. X.; Dong, S. J.;Wang E. K. J. Phys. Chem. C. 2007, 111, 17104.  

    23. [23]

      (20) Cui, Z. M.; Liu, C. P.; Liao, J. H.; Xing,W. Electrochimica Acta 2008, 53, 7807.  

    24. [24]

      (21) Watamabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395

    25. [25]

      (22) Chetty, R.; Xia,W.; Kundu, S.; Bron, M.; Reinecke, T.; Schuhmann,W.; Muhler, M. Langmuir 2009, 25, 3853.  

    26. [26]

      (23) Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc. 2004, 126, 8028.  

    27. [27]

      (24) Kua, J.; ddard,W. A. J. Am. Chem. Soc. 1999, 121, 10928.  

    28. [28]

      (25) Wu, Y. N.; Liao, S. J.;Wang, N. K.; Chen, M.; Birss, V. Sci. China Ser. E 2010, 53, 264.  

  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    5. [5]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    6. [6]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    7. [7]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    8. [8]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    9. [9]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    13. [13]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    19. [19]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    20. [20]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

Metrics
  • PDF Downloads(1521)
  • Abstract views(4250)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return