Citation: ZHU Yuan-Qiang, GUO Jian-Chun, YE Zhong-Bin. AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2043-2050. doi: 10.3866/PKU.WHXB20110921 shu

AuClx (x=1, 3)-Catalyzed Benzannulation Mechanisms between 2-Propynyl-hypnone and Benzyne

  • Received Date: 9 May 2011
    Available Online: 14 July 2011

    Fund Project: 四川省教育厅科研项目(09ZB099)资助 (09ZB099)

  • The AuClx (x=1, 3)-catalyzed benzannulation mechanisms between benzyne and 2-propynylhypnone were investigated using B3LYP, B3PW91, UB3LYP, and the second-order Møller-Plesset perturbation (MP2) methods with the LanL2DZ basis set for Au and the 6-31G*, 6-311++G** basis sets for C, H, O, Cl. For the AuCl or AuCl3 catalysts the reaction occurs through both the [4 + 2] and the [3 + 2] benzannulation pathways to yield the product. With AuCl, the reaction occurs mainly through the [4 + 2] reaction pathway because of this pathway's low activation free energy. With AuCl3, the reaction occurs by the [4+2] and the [3+2] reaction pathways. These two pathways are competitive because of their close activation free energies. An analysis of these results indicates that the ld oxidation states change the reaction mechanisms and greatly influence the reaction barriers. The calculated results indicate that the AuCl catalyst is more effective than AuCl3 because in the reaction catalyzed by AuCl the activation free energy of the rate determining step is 11.18 kJ·mol-1 lower than that of the reaction catalyzed by AuCl3. These results are in od agreement with the experimental observations.
  • 加载中
    1. [1]

      (1) Teschner, D.; Borsodi, J.;Wootsch, A.; Révay, Z.; H?vecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. Science 2008, 320, 86.  

    2. [2]

      (2) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008, 456,933.  

    3. [3]

      (3) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901.  

    4. [4]

      (4) Hoffmann-Rader, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387.  

    5. [5]

      (5) Hashmi, A. S. K. Angew. Chem. Int. Edit. 2005, 44, 6990.  

    6. [6]

      (6) Hashmi, A. S. K. ld Bull. 2004, 37, 51.  

    7. [7]

      (7) Cui, D. N.; Zheng, Z. L.; Zhang, C. J. Org. Chem. 2009, 74, 1426.  

    8. [8]

      (8) Dyker, G. Angew. Chem. Int. Edit. 2000, 39, 4237.

    9. [9]

      (9) Corma, A.; Serna, P. Science 2006, 313, 332.  

    10. [10]

      (10) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921.  

    11. [11]

      (11) Nevado, C.; Cárdenas, D. J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627.  

    12. [12]

      (12) Horino, Y.; Yamamoto, T.; Ueda, K.; Kuroda, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2809.  

    13. [13]

      (13) Norman, R. O. C.; Parr,W. J. E.; Thomas, C. B. J. Chem. Soc. Perkin Trans. 1 1976, 18, 1983.

    14. [14]

      (14) Straub, B. F.; Hofmann, P. Angew. Chem. Int. Edit. 2001, 40, 1288.  

    15. [15]

      (15) Straub, B. F.; llub, C. Chem. Eur. J. 2004, 10, 3081.  

    16. [16]

      (16) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem. Int. Edit. 2003, 42, 4399.  

    17. [17]

      (17) Hashmi, A. S. K. ld Bull. 2004, 37, 3.  

    18. [18]

      (18) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2005, 127, 6962.  

    19. [19]

      (19) rin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260.  

    20. [20]

      (20) Ma, S.; Yu, S.; Gu, Z. Angew. Chem. Int. Edit. 2006, 45, 200.  

    21. [21]

      (21) Biehl, E. R.; Khanapure, S. P. Accounts Chem. Res. 1989, 22, 275.  

    22. [22]

      (22) Pellissier, H.; Santelli, M. Tetrahedron 2003, 59, 701.  

    23. [23]

      (23) Wenk, H. H.;Winkler, M.; Sander,W. Angew. Chem. Int. Edit. 2003, 42, 502.  

    24. [24]

      (24) Lu, J.; Ho, D. M.; Vogelaar, N. J.; Kraml, C. M.; Pascal, R. A., Jr. J. Am. Chem. Soc. 2004, 126, 11168.  

    25. [25]

      (25) Ikadai, J.; Yoshida, H.; Ohshita, J.; Kunai, A. Chem. Lett. 2005, 34, 56.  

    26. [26]

      (26) Hayes, M. E.; Shinokubo, H.; Danheiser, R. L. Org. Lett. 2005, 7, 3917.  

    27. [27]

      (27) Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 15028.  

    28. [28]

      (28) Henderson, J. L.; Edwards, A. S.; Greaney, M. F. J. Am. Chem. Soc. 2006, 128, 7426.  

    29. [29]

      (29) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650.  

    30. [30]

      (30) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361.  

    31. [31]

      (31) Straub, B. F. Chem. Commun. 2004, 1726.

    32. [32]

      (32) Koch,W.; Holthausen, M. C. A Chemist ?s Guide to Density Functional Theory, 2nd ed.;Wiley-VCH:Weinheim, Germany, 2000.

    33. [33]

      (33) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    34. [34]

      (34) Tielens, F.; Saeys, M.; Tourwé, E.; Marin, G. B.; Hubin, A.; Geerlings, P. J. Phys. Chem. A 2002, 106, 1450.  

    35. [35]

      (35) Blajiev, O.; Hubin, A.; Tielens, F.; Geerlings, P. J. Raman Spectrosc. 2003, 34, 295.  

    36. [36]

      (36) Doneux, T.; Tielens, F.; Geerlings, P.; Buess-Herman, C. J. Phys. Chem. A 2006, 110, 11346.  

    37. [37]

      (37) Perdew, J. P.;Wang, Y. Phys. Re v. B 1992, 45, 13244.

    38. [38]

      (38) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    39. [39]

      (39) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 299.  

    40. [40]

      (40) Wadt,W. R.; Hay, P. J. J. Chem. Phys. 1985, 82, 284.  

    41. [41]

      (41) Hay, P. J.;Wadt,W. R. J. Chem. Phys. 1985, 82, 270.  

    42. [42]

      (42) nzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.  

    43. [43]

      (43) nzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.  

    44. [44]

      (44) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275.  

    45. [45]

      (45) Frisch, M. J.; Head- rdon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.  

    46. [46]

      (46) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quant. Chem. Symp. 1979, 13, 325.

    47. [47]

      (47) Handy, N. C.; Schaefer, H. F., III. J. Chem. Phys. 1984, 81, 5031.  

    48. [48]

      (48) Reed, A. E.; Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899.  

    49. [49]

      (49) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al . Gaussian 03, Revision A.01; Gaussian Inc.: Pittsburgh, PA, 2003.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    6. [6]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    7. [7]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    11. [11]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    12. [12]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    13. [13]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    14. [14]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    15. [15]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    16. [16]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    17. [17]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    18. [18]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    19. [19]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

Metrics
  • PDF Downloads(951)
  • Abstract views(4019)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return