Citation: PENG Xuan, ZHANG Qin-Xue, CHENG Xuan, CAO Da-Peng. Adsorption and Separation of CO2/CH4/N2 Binary Mixtures in an Ordered Mesoporous Carbon Material CMK-3[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2065-2071. doi: 10.3866/PKU.WHXB20110919 shu

Adsorption and Separation of CO2/CH4/N2 Binary Mixtures in an Ordered Mesoporous Carbon Material CMK-3

  • Received Date: 20 April 2011
    Available Online: 12 July 2011

    Fund Project: 国家自然科学基金(20806003)资助项目 (20806003)

  • The adsorption and separation of natural gas in the ordered mesoporous carbon material CMK-3 was investigated by molecular simulation and adsorption theory. Grand canonical ensemble Monte Carlo (GCMC) simulations show that a maximum excess uptake of 10.07 and 14.85 mmol·g-1 is obtained at the optimum temperature and pressure of 208 K, 4 MPa for CH4 and 298 K, 6 MPa for CO2 adsorption, respectively. Based on the dual-site Langmuir-Freundlich (DSLF) model, ideal adsorption solution theory (IAST) was used to predict the adsorption and separation of binary mixtures. The adsorption selectivity of SCO2/CH4 is approximately the same as that of SCH4/N2, with a value of about 3 at 298 K and 4 MPa while the highest CO2 selectivity of 7.5 was found in the N2-CO2 system under the same conditions. This indicates that the CMK-3 material is a promising candidate for natural gas separation.
  • 加载中
    1. [1]

      (1) Jun, S.; Ryoo, R. J. Am. Chem. Soc. 2000, 122, 10712.  

    2. [2]

      (2) Kyotani, T.; Sonobe, N.; Tomita, A. Nature 1988, 331, 331.  

    3. [3]

      (3) Lee, J.; Han, S.; Hyeon, T. J. Mater. Chem. 2004, 14, 347.

    4. [4]

      (4) Joo, S. H.; Ryoo, R.; Kruk, M. J. Phys. Chem. B. 2002, 106, 4640.  

    5. [5]

      (5) Zhou, L.; Liu, X.W.;Wang, N.;Wang, Z.; Zhou, Y. P. Chem. Phys. Lett. 2005, 413, 6.  

    6. [6]

      (6) Xia, K.; Gao, Q.;Wu, C.; Song, S.; Ruan, M. Carbon 2007, 45, 1989.  

    7. [7]

      (7) Monk, J.; Singh, R.; Hung, F. J. Phys. Chem. C 2011, 115, 3034.  

    8. [8]

      (8) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 110-139.

    9. [9]

      (9) Peng, X.;Wang,W. C.; Xue, R. S.; Shen, Z. M. AIChE J. 2006, 52, 994.  

    10. [10]

      (10) Myers, A. L.; Prausnitz, J. M. AIChE J. 1965, 11, 121.  

    11. [11]

      (11) Zhou, C.; Hall, F.; Gasem, K.; Robinson, J. Ind. Eng. Chem. Res. 1994, 33, 1280.  

    12. [12]

      (12) Rangarajan, B.; Lira, C. T.; Subramanian, R. AIChE J. 1995, 41, 838.  

    13. [13]

      (13) Ottiger, S.; Pini, R.; Storti, G.; Mazzotti, M. Langmuir 2008, 24, 9531.  

    14. [14]

      (14) Peng, X.; Cao, D. P.;Wang,W. C. Ind. Eng. Chem. Res. 2010, 49, 8787.  

    15. [15]

      (15) Peng, X.; Cao, D. P.;Wang,W. C. Chem. Eng. Sci. 2011, 66, 2266.  

    16. [16]

      (16) Peng, X.; Zhou, J.;Wang,W. C.; Cao, D. P. Carbon 2010, 48, 3760.  

    17. [17]

      (17) Peng, X.; Cao, D. P.;Wang,W. C. Langmuir 2009, 25, 10863.  

    18. [18]

      (18) Peng, X.; Cao, D. P.;Wang,W. C. J. Phys. Chem. C 2008, 112, 13024.  

    19. [19]

      (19) Peng, X.; Cao, D. P.; Zhao, J. S. Sep. Purif. Technol. 2009, 68, 50.  

    20. [20]

      (20) rdon, P. A.; Saeger, R. B. Ind. Eng. Chem. Res. 1999, 38, 4647.  

    21. [21]

      (21) Cao, D. P.;Wang,W. C.; Duan, X. J. Colloid Interface Sci. 2002, 254, 1.  

    22. [22]

      (22) Peng, X.; Zhao, J. S.; Cao, D. P. J. Colloid Interface Sci. 2007, 310, 391.  

    23. [23]

      (23) Nguyen, T. X.; Bae, J.;Wang, Y.; Bhatia, S. K. Langmuir 2009, 25, 431.

    24. [24]

      (24) Sudibandriyo, M.; Pan, Z. J.; Fitzgerald, J. E.; Robinson, R. L., Jr.; Gasem, K. A. M. Langmuir 2003, 19, 5323.  

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    4. [4]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    5. [5]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    8. [8]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    13. [13]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    20. [20]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

Metrics
  • PDF Downloads(1530)
  • Abstract views(2964)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return