Citation: PU Peng, XU Can, XIE Shu-Yu. Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2227-2232. doi: 10.3866/PKU.WHXB20110916 shu

Influence of the Size Effect on the Chemical Shielding Tensors of SiO2 Nanotubes

  • Received Date: 23 May 2011
    Available Online: 11 July 2011

    Fund Project: 国家杰出青年科学基金(50925103)资助项目 (50925103)

  • Finite length SiO2 nanotubes composed of a three-membered ring (3MR) cross section were investigated by density functional theory. Nuclear magnetic resonance (NMR) results reveal that the isotropic chemical shielding tensor (σiso) and anisotropic chemical shielding tensor (Δσ) of the SiO2 nanotubes oscillate from the terminal end to the intermediate part of the structures with an increase in nanotube lengths, and they tend to reach different stable values. When the length is greater than certain value the σiso and Δσ values obtained from the intermediate part of the finite length nanotube can be used for theoretical predictions of long or infinite length nanotubes. Hence, this investigation is a guide for the selection of reasonable finite length nanotubes to model infinite length nanotubes.
  • 加载中
    1. [1]

      (1) Iijima, S. Nature 1991, 354, 56.  

    2. [2]

      (2) Lee, J. B.; Lee, S. C.; Lee, S. M.; Kim, H. J. Chem. Phys. Lett. 2007, 436, 162.  

    3. [3]

      (3) Ding, H. M.; Shao, L.; Liu, R. J.; Xiao, Q. G.; Chen, J. F. J. Colloid Interface Sci. 2005, 290, 102.  

    4. [4]

      (4) Xiao, Q. G.; Tao, X.; Zhang, J. P.; Chen, J. F. J. Mol. Catal B-Enzym. 2006, 42, 14.  

    5. [5]

      (5) Mor, G. K.; Carvalho, M. A.; Varghese, O. K.; Pishko, M. V.; Grimes, C. A. J. Mater. Res. 2004, 19, 628.

    6. [6]

      (6) Liang, J.; Ma, S. F.; Han, P. D.; Sun, C. Y.; Xu, B. S. Rare Metal Mat. Eng. 2005, 34, 287.

    7. [7]

      (7) Chen,W.; Mai, L. Q.; Xu, Q.; Peng, J. F.; Zhu, Q. Y.; Yu, H. J. Inorg. Mater. 2005, 20, 65.

    8. [8]

      (8) Chen, J.; Li, S. L.; Tao, Z. L. J. Alloy. Compd. 2003, 356, 413.  

    9. [9]

      (9) Zhang, M.; Ciocan, E.; Bando, Y.;Wada, K.; Cheng, L. L.; Pirouz, P. Appl. Phys. Lett. 2002, 80, 491.  

    10. [10]

      (10) Niu, J.; Sha, J.; Zhang, N.; Ji, Y.; Ma, X.; Yang, D. Physica E 2004, 23, 1.  

    11. [11]

      (11) Yu, D. P.; Hang, Q. L.; Ding, Y.; Zhang, H. Z.; Bai, Z. G.;Wang, J. J.; Zou, Y. H.; Qian,W.; Xiong, G. C.; Feng, S. Q. Appl. Phys. Lett. 1998, 73, 3076.  

    12. [12]

      (12) Pan, Z.W.; Dai, Z. R.; Ma, C.;Wang, Z. L. J. Am. Chem. Soc. 2002, 124, 1817.  

    13. [13]

      (13) Bodaghi, A.; Mirzaei, M.; Seif, A.; Giahi, M. Physica E 2008, 41, 209.  

    14. [14]

      (14) Mirzaei, M.; Nouri, A. J. Mol. Struct.-Theochem 2010, 942, 83.  

    15. [15]

      (15) Mirzaei, M.; Seif, A.; Hadipour, N. L. Chem. Phys. Lett. 2008, 461, 246.  

    16. [16]

      (16) Nouri, A.; Mirzaei, M. J. Mol. Struct.-Theochem 2009, 913, 207.  

    17. [17]

      (17) Zurek, E.; Pickard, C. J.; Autschbach, J. J. Phys. Chem. A 2009, 113, 4117.  

    18. [18]

      (18) Xu, C.; Cao, J.; Zhu, L. F.; Gao, C. Y. Acta Phys. -Chim. Sin. 2006, 22, 451. [徐灿, 曹娟, 朱莉芳, 高晨阳. 物理化学学报, 2006, 22, 451.]  

    19. [19]

      (19) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.  

    20. [20]

      (20) Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

    21. [21]

      (21) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.  

    22. [22]

      (22) Lipton, A. S.; Ellis, P. D. J. Am. Chem. Soc. 2007, 129, 9192.  

    23. [23]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision C.02; Gaussian Inc.:Wallingford, CT, 2004.

    24. [24]

      (24) Helgaker, T.; Jaszunski, M.; Ruud, K. Chem. Rev. 1999, 99, 293.  

    25. [25]

      (25) Dong,W. J.; Li,W. J.; Yu, K. F.; Krishna, K.; Song, L. Z.; Wang, X. F.;Wang, Z. C.; Coppens, M. O.; Feng, S. H. Chem. Commun. 2003, 1302.

    26. [26]

      (26) Trong, O. D.; Kaliaguine, S. Angew. Chem. Int. Edit. 2002, 41, 1036.  

  • 加载中
    1. [1]

      Jinkang Jin Yidian Sheng Ping Lu Zhan Lu . Introducing a Website for Learning Nuclear Magnetic Resonance (NMR) Spectrum Analysis. University Chemistry, 2024, 39(11): 388-396. doi: 10.12461/PKU.DXHX202403054

    2. [2]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    3. [3]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    4. [4]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    7. [7]

      Haiyang Jin Yonghai Hui Yongfei Zhang Lijun Gao Yun Wang . Application and Exploration of Nuclear Magnetic Resonance Spectrometer in Undergraduate Basic Laboratory Teaching. University Chemistry, 2025, 40(3): 245-250. doi: 10.12461/PKU.DXHX202406022

    8. [8]

      Haolin ZhanQiyuan FangJiawei LiuXiaoqi ShiXinyu ChenYuqing HuangZhong Chen . Noise Reduction of Nuclear Magnetic Resonance Spectroscopy Using Lightweight Deep Neural Network. Acta Physico-Chimica Sinica, 2025, 41(2): 2310045-0. doi: 10.3866/PKU.WHXB202310045

    9. [9]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    12. [12]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    13. [13]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    14. [14]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    15. [15]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

Metrics
  • PDF Downloads(918)
  • Abstract views(2561)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return