Citation: YU Yan-Jie, ZHANG Shuan-Qin, KONG Ling-Dong, LIN Li, CHENG Tian-Tao, CHEN Jian-Min. Effects of Nitrates on the Heterogeneous Reaction of Carbonyl Sulfide on Model Aerosols[J]. Acta Physico-Chimica Sinica, ;2011, 27(10): 2275-2281. doi: 10.3866/PKU.WHXB20110912 shu

Effects of Nitrates on the Heterogeneous Reaction of Carbonyl Sulfide on Model Aerosols

  • Received Date: 15 May 2011
    Available Online: 7 July 2011

    Fund Project: 国家自然科学基金(40775079, 40875073, 40728006, 40533017) (40775079, 40875073, 40728006, 40533017)

  • The heterogeneous reaction of carbonyl sulfide (COS) on hematite particles in the presence of nitrate was investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). For sodium nitrate-containing samples, the hematite sample containing NaNO3 with mass fraction of 4% gave the highest reaction rate, which was about 5 times higher than that of hematite. For the particles containing nitrate at the same mass fraction (24%) the reactivity in descending order was α-Fe2O3/KNO3, α-Fe2O3/NaNO3, α-Fe2O3/NH4NO3 and α-Fe2O3. No uptake of COS was observed for the pure NaNO3, KNO3 and NH4NO3 samples. These results indicate that the added nitrate increased the COS conversion ability of α-Fe2O3 particles.
  • 加载中
    1. [1]

      (1) Satheesh, S. K.; Ramanathean, V. Nature 2000, 405, 60.  

    2. [2]

      (2) Anderson, T. L.; Charlson, R. J.; Schwartz, S. E.; Knutti, R.; Boucher, O.; Rodhe, H.; Heintzenberg, J. Science 2003, 300, 1103.  

    3. [3]

      (3) Schwartz, S. E.; Andreae, M. O. Science 1996, 272, 1121.  

    4. [4]

      (4) Jacob, D. J. Atmos. Environ. 2000, 34, 2131.  

    5. [5]

      (5) Gard, E. E.; Kleeman, M. J.; Gross, D. S.; Hughes, L. S.; Allen, J. O.; Morrical, B. D.; Fergenson, D. P.; Dienes, T.; Gälli, M. E.; Johnson, R. J.; Cass, G. R.; Prather, K. A. Science 1998, 279, 1184.  

    6. [6]

      (6) Seinfeld, J. H.; Pandis, S. N. Atmospheric chemistry and physics: From air pollution to climate change. JohnWiley & Sons, Inc.: New York, 2006; pp 32-33.

    7. [7]

      (7) Hofmann, D. J. Science 1990, 248, 996.  

    8. [8]

      (8) Thomason, L.W.; Kent, G. S.; Trepte, C. R.; Poole, L. R. J. Geophys. Res. 1997, 102, 3611.  

    9. [9]

      (9) Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P. Nature 1980, 283, 283.  

    10. [10]

      (10) Ramanthan, V.; Crutzen, P. J.; Kiehl, J. T.; Rosenfeld, D. Science 2001, 294, 2119.  

    11. [11]

      (11) Watts, S. F. Atmos. Environ. 2000, 34, 761.  

    12. [12]

      (12) Wu, H. B.;Wang, X.; Chen, J. M.; Yu, H. K.; Xue, H. X.; Pan, X. X.; Hou, H. Q. Chinese Sci. Bull. 2004, 49 (12), 1231.

    13. [13]

      [吴洪波, 王晓, 陈建民, 俞宏坤, 薛华欣, 潘循皙, 侯惠奇. 科学通报, 2004, 49 (8), 739.]  

    14. [14]

      (13) He, H.; Liu, J. F.; Mu, Y. J.; Yu, Y. B.; Chen, M. X. Environ. Sci. Technol. 2005, 39, 9637.  

    15. [15]

      (14) Liu, J. F.; Yu, Y. B.; Mu, Y. J.; He, H. J. Phys. Chem. B 2006, 110, 3225.  

    16. [16]

      (15) Liu, Y. C.; He, H.; Xu,W. Q.; Yu, Y. B. J. Phys. Chem. A 2007, 111, 4333.  

    17. [17]

      (16) Liu, Y. C.; He, H. J. Phys. Chem. A 2009, 113, 3387.  

    18. [18]

      (17) Chen, H.; Kong, L.; Chen, J.; Zhang, R.;Wang, L. Environ. Sci. Technol. 2007, 41, 6484.  

    19. [19]

      (18) Liu, Y.; Yang, Z.; Desyaterik, Y.; Gassman, P. L.;Wang, H.; Laskin, A. Anal. Chem. 2008, 80, 633.  

    20. [20]

      (19) Hoffman, R. C.; Laskin, A.; Finlayson-Pitts, B. J. J. Aerosol Sci. 2004, 35, 869.  

    21. [21]

      (20) Ullerstam M., Vogt R., Langer, S.; Ljungström, E. Phys. Chem. Chem. Phys. 2002, 4, 4694.

    22. [22]

      (21) Amenomiya, Y.; Morikawa, Y.; Pleizier, G. J. Catal. 1977, 46, 431.  

    23. [23]

      (22) Fu, H.;Wang, X.;Wu, H.; Yin, Y.; Chen, J. J. Phys. Chem. C 2007, 111, 6077.  

    24. [24]

      (23) Ullerstam, M.; Johnson, M. S.; Vogt, R.; Ljungström, E. Atmos. Chem. Phys. 2003, 3, 2043.  

    25. [25]

      (24) Dohrmann, J.; Glebov, A.; Toennies, J. P.;Weiss, H. Surf. Sci. 1996, 368, 118.  

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    3. [3]

      Lubing QinFang SunMeiyin LiHao FanLikai WangQing TangChundong WangZhenghua Tang . Atomically Precise (AgPd)27 Nanoclusters for Nitrate Electroreduction to NH3: Modulating the Metal Core by a Ligand Induced Strategy. Acta Physico-Chimica Sinica, 2025, 41(1): 100008-0. doi: 10.3866/PKU.WHXB202403008

    4. [4]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    5. [5]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Yiming Liang Ziyan Pan Kin Shing Chan . One Drink, Two Tears in the Central Nervous System: The Perils of Disulfiram-Like Reactions. University Chemistry, 2025, 40(4): 322-325. doi: 10.12461/PKU.DXHX202406016

    8. [8]

      Honghong ZhangZhen WeiDerek HaoLin JingYuxi LiuHongxing DaiWeiqin WeiJiguang Deng . 非均相催化CO2与烃类协同催化转化的最新进展. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-0. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    12. [12]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    13. [13]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    14. [14]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    15. [15]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    16. [16]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    19. [19]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    20. [20]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(1014)
  • Abstract views(2268)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return