Citation: XIA Hai-Ting, KUANG Xiao-Jun, WANG Chun-Hai, LI Wen-Xian, JING Xi-Ping, ZHAO Fei, YUE Zhen-Xing. Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 2009-2014. doi: 10.3866/PKU.WHXB20110839 shu

Conductivity and Dielectric Loss of Tungsten-Bronze-Type BaNd2Ti4O12 Microwave Ceramics

  • Received Date: 29 April 2011
    Available Online: 28 June 2011

    Fund Project: 国家自然科学基金(20821091, 21071009, 20423005)资助项目 (20821091, 21071009, 20423005)

  • Tungsten-bronze type titanate BaNd2Ti4O12 ceramics were synthesized by solid state reactions. The conductivity and microwave dielectric loss of the samples that were thermally treated under various conditions and Ta-doped were investigated by electrochemical impedance measurement and microwave dielectric resonator measurement. The variation in conductivity with annealing atmospheres of air, O2, and N2 was consistent with the defect equilibriums 2OO×↔2VO··+O2↑+2e' and TiTi×+e'↔Ti'Ti, suggesting n-type conductance for BaNd2Ti4O12. Thermal treatment in air/O2 was found to favor the elimination of the native defects VO×, Ti'Ti and weakly bound electrons thus decreasing the conductivity. Thermal treatment in a N2 atmosphere, which had a low oxygen partial pressure, increased the defect content and the conductivity. Thermal treatment in air/O2/N2 did not clearly affect the microwave dielectric loss, suggesting that native defects have negligible effects on this property. The air-annealed sample was found to have lower conductivity and lower microwave loss compared with the air-quenched sample. The change in conductivity was found to be related to the equilibrium of the native defects but the change in microwave dielectric loss might be explained by the release of thermally induced lattice strain. Ta doping reduced the conductivity but increased the microwave dielectric loss. This work shows that air-annealing may be an efficient way to improve the Q×f factor for BaNd2Ti4O12 ceramics, which was enhanced by ~12%.

  • 加载中
    1. [1]

      (1) Reaney, I. M.; Iddles, D. J. Am. Ceram. Soc. 2006, 89, 2063.

    2. [2]

      (2) Cava, R. J. J. Mater. Chem. 2001, 11, 54.  

    3. [3]

      (3) Wolfram, G.; bel, H. E. Mater. Res. Bull. 1981, 16, 1455.  

    4. [4]

      (4) Negas, T.; Yeager, G.; Bell, S.; Coats, N.; Minis, I. Am. Ceram. Soc. Bull. 1993, 72, 80.

    5. [5]

      (5) Ohsato, H.; Kato, K.; Mizuta, M.; Nishigaki, S.; Okuda, T. Jpn. J. Appl. Phys. 1995, 34, 5413.

    6. [6]

      (6) Valant, M.; Suvorov, D.; Rawn, C. J. Jpn. J. Appl. Phys. 1999, 38, 2820.  

    7. [7]

      (7) Ohsato, H. J. Eur. Ceram. Soc. 2001, 21, 2703.  

    8. [8]

      (8) Wakino, K. Ferroelectrics 1989, 91, 69.  

    9. [9]

      (9) Nenasheva, E. A.; Mudroliubova, L. P.; Kartenko, N. F. J. Eur. Ceram. Soc. 2003, 23, 2443.

    10. [10]

      (10) Okawa, T.; Kiuchi, K.; Okabe, H.; Ohsato, H. Jpn. J. Appl. Phys. 2001, 40, 5779.  

    11. [11]

      (11) Kuang, X.; Allix, M. M. B.; Claridge, J. B.; Niu, H. J.; Rosseinsky, M. J.; Ibberson, R. M.; Iddles, D. M. J. Mater. Chem. 2006, 16, 1038.

    12. [12]

      (12) Templeton, A.;Wang, X.; Penn, S. J.;Webb, S. J.; Cohen, L. F.; Alford, N. M. J. Am. Ceram. Soc. 2000, 83, 95.  

    13. [13]

      (13) Lee, M. J.; Kim, C. Y.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 173.

    14. [14]

      (14) Lee, M. J.; You, B. D.; Kang, D. S. J. Mater. Sci. Mater. Electron. 1995, 6, 165.

    15. [15]

      (15) Kuang, X.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2006, 89, 241.  

    16. [16]

      (16) Kuang, X.; Xia, H.; Liao, F.;Wang, C.; Li, L.; Jing, X.; Tang, Z. J. Am. Ceram. Soc. 2007, 90, 3142.  

    17. [17]

      (17) Hu, P.; Jiao, H.;Wang, C. H.;Wang, X. M.; Ye, S.; Jing, X. P.; Zhao, F.; Yue, Z. X. Mater. Sci. Eng. B 2011, 176, 401.  

    18. [18]

      (18) Ohsato, H. J. Ceram. Soc. Jpn. 2005, 113, 703.  

    19. [19]

      (19) Kolar, D.; Gaberscek, S.; Volavsek, B.; Parker, H. S.; Roth, R. S. J. Solid State Chem. 1981, 38, 158.  

    20. [20]

      (20) Takahashi, J.; Ikegami, T.; Kageyama, K. J. Am. Ceram. Soc. 1991, 74, 1873.  

    21. [21]

      (21) Varfolomeev, M. B.; Mironov, A. S.; Kostomarov, V. S.; lubtsova, L. A.; Zolotova, T. A. Russ. J. Inorg. Chem. 1988, 33, 607.

    22. [22]

      (22) Ohsato, H.; Ohhashi, T.; Nishigaki, S.; Okuda, T.; Sumiya, K.; Suzuki, S. Jpn. J. Appl. Phys. 1993, 32, 4323.  

    23. [23]

      (23) Hakki, B.W.; Coleman, P. D. IEEE Trans. Microwave Theory Tech. 1960, 8, 402.  

    24. [24]

      (24) Courtney,W. E. IEEE Trans. Microwave Theory Tech. 1970, 18, 476.  

    25. [25]

      (25) Krupka, J.; Derzakowski, K.; Riddle, B.; Baker-Jarvis, J. Meas. Sci. Technol. 1998, 9, 1751.

    26. [26]

      (26) Irvine, J. T. S.; Sinclair, D. C.;West, A. R. Adv. Mater. 1990, 2, 132.  

    27. [27]

      (27) Jing, X.;West, A. R. Acta. Phys.-Chim. Sin. 2003, 19, 109. [荆西平,West, A. R. 物理化学学报, 2003, 19, 109.]

    28. [28]

      (28) Yoo, S.; Yoon, K. H.; Choi, J.; Yoon, S. Jpn. J. Appl. Phys. 2004, 43, L343.

    29. [29]

      (29) Ferreira, V. M.; Baptista, J. L. J. Am. Ceram. Soc. 1996, 79, 1697.  

    30. [30]

      (30) Michiura, N.; Tatekawa, T.; Higuchi, Y.; Tamura, H. J. Am. Ceram. Soc. 1995, 78, 793.


  • 加载中
    1. [1]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    2. [2]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    4. [4]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    5. [5]

      Jianjun Fang Kunchen Xie Yongli Song Kangyi Zhang Fei Xu Xiaoze Shi Ming Ren Minzhi Zhan Hai Lin Luyi Yang Shunning Li Feng Pan . Break the capacity limit of Li4Ti5O12 anodes through oxygen vacancy engineering. Chinese Journal of Structural Chemistry, 2025, 44(2): 100504-100504. doi: 10.1016/j.cjsc.2024.100504

    6. [6]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    7. [7]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    10. [10]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    11. [11]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    19. [19]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    20. [20]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

Metrics
  • PDF Downloads(903)
  • Abstract views(2743)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return