Citation:
TONG Xin, CHEN Rui, CHEN Tie-Hong. Photocatalytic Activity of TiO2 with Micrometer-Sized Macropores[J]. Acta Physico-Chimica Sinica,
;2011, 27(08): 1941-1946.
doi:
10.3866/PKU.WHXB20110836
-
Macroporous TiO2 with aligned channels was synthesized using citric acid as a chelator. The wall of the macropore was composed of nanosized anatase crystals. The degradation of rhodamine B (RhB) was used as a model reaction to test the photocatalytic activity of the samples. Compared with ground TiO2 powder, macroporous TiO2 with aligned channels did not give a better photocatalytic RhB degradation property. Because of the scattering of UV-light by anatase nanoparticles, the TiO2 located inside the macroporous wall was not irradiated by UV-light, and this affected the photocatalytic property of the macroporous TiO2. The photocatalytic property improved upon exposing more of the external TiO2 surface to UV light. Furthermore, uniform and dispersed micrometer sized TiO2 spheres were fabricated using cetyltriethylammonium bromide (CTAB) and polyacrylic acid (PAA) as templates. The photocatalytic degradation of RhB confirmed that reducing the particle size improved the efficiency of the photocatalytic activity.
-
Keywords:
-
TiO2
, - Photocatalysis,
- Morphology,
- Macroporous structure,
- Scattering
-
-
-
-
[1]
(1) Shibata, N.; to, A.; Choi, S. Y.; Mizoguchi, T.; Findlay, S. D.; Yamamoto, T.; Ikuhara, Y. Science 2008, 5901, 570.
-
[2]
(2) Hardi, M. D.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. J. Am. Chem. Soc. 2009, 131, 10857.
-
[3]
(3) Gutierrez, J.; Tercjak, A.; Mondra , I. J. Am. Chem. Soc. 2010, 132, 873.
-
[4]
(4) Huang, F. Z.; Chen, D. H.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Adv. Funct. Mater. 2010, 20, 1301.
-
[5]
(5) Li, G. R.;Wang, F.; Jiang, Q.W.; Gao, X. P.; She, P.W. Angew. Chem. Int. Edit. 2010, 122, 3735.
-
[6]
(6) Zhang, X. R.; Lin, Y. H.; Zhang, J. F.; He, D. Q.;Wang, D. J. Acta Phys. -Chim. Sin. 2010, 26, 2733. [张晓茹, 林艳红, 张健 夫, 何冬青, 王德军. 物理化学学报, 2010, 26, 2733.]
-
[7]
(7) Xu, P. C.; Liu, Y.;Wei, J. H.; Xiong R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261. [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]
-
[8]
(8) Wang, M. Y.;Wang, C. L.; Xie, K. P.; Sun, L.; Lin, C. J. Acta Phys. -Chim. Sin. 2009, 25, 2475. [王梦晔, 王成林, 谢鲲鹏, 孙岚, 林昌健. 物理化学学报, 2009, 25, 2475.]
-
[9]
(9) Kwon, D. H.; Kim, K. M.; Jang, J. H.; Jeon, J. M.; Lee, M. H.; Kim, G. H.; Li, X. S.; Park, G. S.; Lee, B.; Han, S.; Kim, M.; Hwang, C. S. Nature Nanotech. 2010, 5, 148.
-
[10]
(10) Jung, H. S.; Lee, J. K.; Lee, J.; Kang, B. S.; Jia, Q. X.; Nastasi, M.; Noh, J. H.; Cho, C. M.; Yoon, S. H. Langmuir 2008, 24, 2695.
- [11]
-
[12]
(12) Suwanchawalit, C.; Patil, A. J.; Kumar, R. K.;Wongnawa, S.; Mann, S. J. Mater. Chem. 2009, 19, 8478.
-
[13]
(13) Torimoto, T.; Nakamura, N.; Ikeda, S.; Ohtani, B. Phys. Chem. Chem. Phys. 2002, 4, 5910.
-
[14]
(14) Kandiel, T. A.; Dillert, R.; Feldhoff, A.; Bahnemann, D.W. J. Phys. Chem. C 2010, 114, 4909.
-
[15]
(15) Meulen, T. V. D.; Mattson, A.; ?sterlund, L. J. Catal. 2007, 251, 131.
-
[16]
(16) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Nature 2008, 453, 638.
-
[17]
(17) He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Nature Mater. 2009, 8, 585.
-
[18]
(18) Zhao,W.; Ma,W. H.; Chen, C. C.; Zhao, J. C.; Shuai, Z. G. J. Am. Chem. Soc. 2004, 126, 4782.
-
[19]
(19) Chen, X. B.; Burda, C. J. Am. Chem. Soc. 2008, 130, 5018.
-
[20]
(20) Xu,W. Q.; He, H.; Yu, Y. B. J. Phys. Chem. C 2009, 113, 4426.
-
[21]
(21) Kim, S. H.; Cho, Y. S.; Jeon, S. J.; Eun, T. H.; Yi, G. R.; Yang, S. M. Adv. Mater. 2008, 20, 3268.
-
[22]
(22) Li, H. X.; Bian, Z. F.; Zhu, J.; Zhang, D. Q.; Li, G. S.; Huo, Y. N.; Li, H.; Lu, Y. F. J. Am. Chem. Soc. 2007, 129, 8406.
- [23]
-
[24]
(24) Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Thampi, R.; Durrant, M. G. J. R. J. Am. Chem. Soc. 2004, 126, 5670.
-
[25]
(25) Choi, H.; Sofranko, A. C.; Dionysiou, D. D. Adv. Funct. Mater. 2006, 16, 1067.
-
[26]
(26) Yu, J. G.; Su, Y. R.; Cheng, B. Adv. Funct. Mater. 2007, 17, 1984.
-
[27]
(27) Li, X.C.; John, V. T.; He, G. H.; Zhan, J. J.; Tan, G.; Mcpherson, G.; Bose, A.; Sarkar, J. Langmuir 2009, 25, 7586.
-
[1]
-
-
-
[1]
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[5]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[6]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[7]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[8]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[9]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[10]
Meihong Luo , Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055
-
[11]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[12]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[13]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[14]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[15]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[16]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[17]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[18]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(1248)
- Abstract views(3040)
- HTML views(8)