Citation: TANG Rui-Zhi, ZHANG Peng, LI Hai-Xia, LIU Yan-Cheng, WANG Wen-Feng. Pulse Radiolysis Study of the Reactions between Phenothiazine and CCl3OO·, ·OH[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1975-1978. doi: 10.3866/PKU.WHXB20110825 shu

Pulse Radiolysis Study of the Reactions between Phenothiazine and CCl3OO·, ·OH

  • Received Date: 26 April 2011
    Available Online: 22 June 2011

    Fund Project: 国家自然科学基金(10675158)资助项目 (10675158)

  • The kinetics and mechanisms of the reactions between phenothiazine and CCl3OO·, ·OH were evaluated and the related rate constants were determined using nanosecond pulse radiolysis technique. The experimental results indicate that the maximum absorption of the transient product from the reaction between phenothiazine and CCl3OO·, ·OH was located at 380 nm, which is attributed to CCl3OO· and ·OH abstracting hydrogen from phenothiazine to generate a phenothiazine radical. The rate constants of the reactions between phenothiazine and CCl3OO·, ·OH were determined to be 1.1×109, 4.0×109 L·mol-1·s-1, respectively. These results provide a theoretical foundation for the further study of the antioxidant activity of phenothiazine.

  • 加载中
    1. [1]

      (1) Harman, D. J. Gerontol. 1956, 11, 298.

    2. [2]

      (2) Connor, H. D.; Thurman, R. G.; Galizi, M. D.; Mason, R. P. J. Biol. Chem. 1986, 261 (10), 4542.

    3. [3]

      (3) Pan, J. X.;Wang,W. F.; Lin,W. Z.; Yao, S. D. Free. Radical. Res. 1999, 30, 241.  

    4. [4]

      (4) Zheng, R. L.; Shi, Y. M.; Jia, Z. J.; Zhao, C. Y.; Zhang, Q. Z.; Tan, X. R. Chem. Soc. Rev. 2010, 39, 2827.  

    5. [5]

      (5) Byczkowski, J. Z.; Gesser, T. Int. J. Biochem. 1988, 6, 569.

    6. [6]

      (6) Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17.

    7. [7]

      (7) Wang,W. F.; Luo, J.; Yao, S. D.; Lian, Z. R.; Zuo, Z. H.; Zhang, J. S.; Lin, N. Y. Radiat. Phys. Chem. 1995, 46, 41.  

    8. [8]

      (8) Foti, M. C. J. Pham. Pharmacol. 2007, 59, 1673.

    9. [9]

      (9) Cécile, C. O.; Philippe, H.; Jean, P.; Christian, R. J. Am. Chem. Soc. 2002, 124, 14027.  

    10. [10]

      (10) Luca, V.; In ld, K. U.; Lusztyk, J. J. Am. Chem. Soc. 1996, 118, 3545.  

    11. [11]

      (11) Adamic, K.; Dunn, M.; In ld, K. U. Can. J. Chem. 1969, 47, 287.  

    12. [12]

      (12) Korth, C.; May, B. H.; Cohen, F. E.; Prusiner, S. B; Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 9836.  

    13. [13]

      (13) Guo, X.; Liu, Y.; Guo, R. Acta Phys.-Chim. Sin. 2001, 17, 982. [郭霞, 刘燕, 郭荣. 物理化学学报, 2001, 17, 982.]

    14. [14]

      (14) Murphy, C. M.; Ravner, H.; Smith, N. L. Ind. Eng. Chem. 1950, 42, 2479.  

    15. [15]

      (15) Fukuzumi, K.; Ikeda, N.; Egawa, M. J. Am. Oil. Chem. Soc. 1976, 53, 623.  

    16. [16]

      (16) Yamamura, T.; Suzuchi, K.; Yamaguchi, T.; Nishiyama, T. B. Chem. Soc. Jpn. 1997, 70, 413.  

    17. [17]

      (17) Cini, M.; Fariello, R. G.; Bianchetti, A.; Moretti, A. Neurochem. Res. 1994, 19, 283.  

    18. [18]

      (18) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Valgimigli, L.; Gigmes, D.; Tordo, P. J. Am. Chem. Soc. 1999, 121, 11546.  

    19. [19]

      (19) Tang, Y. Z.; Liu, Z. Q. Bioorg. Med. Chem. 2007, 15, 1903.  

    20. [20]

      (20) Li, G. X.; Tang, Y. Z.; Liu, Z. Q. J. Biochem. Mol. Toxil. 2009, 23, 280.  

    21. [21]

      (21) Liu, Z. Q.; Tang, Y. Z.;Wu, D. J. Phys. Org. Chem. 2009, 20, 1009.

    22. [22]

      (22) Zhang, P.; Yao, S. D.; Li, H. X; Song, X. Y.;Wang,W. F. Radiat. Phys. Chem. 2011, 80, 548.  

    23. [23]

      (23) Hill, T. J.; Land, E. J.; McGarvey, D. J.;Wolfgang, S.; Tinkler, J. H.; Truscott, T. G. J. Am. Chem. Soc.1995, 117, 8322.

    24. [24]

      (24) Shen, X. H.; Lind, J.; Eriksen, T. E. J. Phys. Chem. 1989, 93, 553.  

    25. [25]

      (25) Pan, D. X.; Yu, Y.; Dong,W. B.; Zheng, L.; Lu, X.; Yao, S. D.; Hou, H. Q. Acta Phys. -Chim. Sin. 2004, 20, 1099. [潘丹霞, 于勇, 董文博, 郑璐, 卢霄, 姚思德, 侯惠奇. 物理化学学报, 2004, 20, 1099.]

    26. [26]

      (26) Smith, G. A.; McGimpsey,W. G. J. Phys. Chem. 1994, 98, 2923.  


  • 加载中
    1. [1]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    2. [2]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    5. [5]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    6. [6]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    7. [7]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    13. [13]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    14. [14]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(849)
  • Abstract views(2397)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return