Citation: XU Ning, ZHANG Chao, KONG Fan-Jie, SHI You-Jin. Transport Properties of Corrugated Graphene Nanoribbons[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2107-2110. doi: 10.3866/PKU.WHXB20110819 shu

Transport Properties of Corrugated Graphene Nanoribbons

  • Received Date: 11 April 2011
    Available Online: 20 June 2011

    Fund Project: 国家自然科学基金(10874052) (10874052) 全国优秀博士学位论文基金(200726) (200726) 江苏省自然科学基金(BK2010499) (BK2010499) 江苏省高校自然科学研究基金(11KJB140012) (11KJB140012)盐城工学院面上项目(XKY2011014)资助 (XKY2011014)

  • We studied the transport properties of corrugated graphene nanoribbons by the recursive Green function method. We show that in the presence of ripples the minigaps with zero conductance and minibands with conductance fluctuations form in the zigzag ribbons among the first Van Hove singularity. For the metal armchair ribbons a conductance gap is present in the vicinity of the Fermi energy, which corresponds to a metal-semiconductor transition. With the fluctuation of ripples intensifying the overall averaged conductance decreases for both the zigzag and armchair ribbons and it tends to be zero. These results are useful for a better understanding of the electronic transport properties of realistic graphene nanoribbons and will be helpful for the design of nanodevices based on graphene.
  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Gri rieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  

    2. [2]

      (2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M.; Gri rieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197.  

    3. [3]

      (3) Zhang, Y.; Tan, Y.W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 202.

    4. [4]

      (4) Nomura, K.; MacDonald, A. H. Phys. Rev. Lett. 2007, 98, 076602.  

    5. [5]

      (5) Tworzydlo, J.; Trauzettel, B.; Titov, M.; Rycerz, A.; Beenakker, C.W. J. Phys. Rev. Lett. 2006, 96, 246802.  

    6. [6]

      (6) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.  

    7. [7]

      (7) Katsnelson, M. L.; Novoselov, K. S. Solid State Commun. 2007, 143, 3.  

    8. [8]

      (8) Vazquez de Parga, A. L.; Calleja, F.; Borca, B.; Passegg, M. C. G.; Hinarejos, J. J., Jr.; Guinea, F.; Miranda, R. Phys. Rev. Lett. 2008, 100, 056807.  

    9. [9]

      (9) Gusynin, V. P.; Sharapov, S. G. Phys. Rev. Lett. 2005, 95, 146801.  

    10. [10]

      (10) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006, 73, 125411.  

    11. [11]

      (11) Peierls, R. E. Helv. Phys. Acta 1934, 7, 81.

    12. [12]

      (12) Peierls, R. E. Ann. Inst. H. Poincare 1935, 5, 177.

    13. [13]

      (13) Landau, L. D. Zur Theorie der Phasenumwandlungen II. Phys. Z. 1937, 11, 26.

    14. [14]

      (14) Landau, L. D.; Lifshitz, E. M. Statistical Physics Part I; Pergamon: Oxford, 1980; Sections 137 and 138.

    15. [15]

      (15) Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Rep. Prog. Phys. 1984, 47, 399.  

    16. [16]

      (16) Zinkeallmang, M.; Feldman, L. C.; Grabow, M. H. Surf. Sci. Rep. 1992, 16, 377.  

    17. [17]

      (17) Evans, J.W.; Thiel, P. A.; Bartelt, M. C. Surf. Sci. Rep. 2006, 61, 1.

    18. [18]

      (18) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.  

    19. [19]

      (19) Ishigami, M. J.; Chen, J. H.; Cullen,W. G.; Fuhrer, M. S.; Williams, E. D. Nano Lett. 2007, 7, 1643.  

    20. [20]

      (20) Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G.W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 9209.  

    21. [21]

      (21) Fasolino, A.; Los, J. H.; Katsnelson, M. I. Nat. Mater. 2007, 6, 858.  

    22. [22]

      (22) Kim, E. A.; Castro Neto, A. H. Europhys. Lett. 2008, 84, 57007.  

    23. [23]

      (23) Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Nat. Phys. 2008, 4, 144.  

    24. [24]

      (24) Hiura, H. Appl. Surf. Sci. 2004, 222, 374.  

    25. [25]

      (25) Zhang, Y.; Tan, Y.W.; St?rmer, H. L.; Kim, P. Nature 2005, 438, 201.  

    26. [26]

      (26) Berger, C.; Song, Z. M.; Li, X. B.;Wu, X. S.; Brown, N.; Naud, C.; Mayo, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer,W. A. Science 2006, 312, 1191.  

    27. [27]

      (27) Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A. Y.; Feng, R.; Dai, Z.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108, 19912.  

    28. [28]

      (28) Li, T. C.; Lu, S. P. Phys. Rev. B 2008, 77, 085408.  

    29. [29]

      (29) Son, Y.W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803.  

    30. [30]

      (30) Pereira Vitor, M.; Castro Neto, A. H. Phys. Rev. B 2009, 80, 045401.

    31. [31]

      (31) Xu, N.; Ding, J.W.; Xing, D. Y. J. Appl. Phys. 2008, 103, 083710.  

    32. [32]

      (32) Kobayashi, Y.; Fukui, K.; Enoki, T.; Kusakabe, K. Phys. Rev. B 2006, 73, 125415.  

  • 加载中
    1. [1]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    2. [2]

      Na Li Limin Shao . Deduction of the General Formula of the Inverse Function of the Titration Curve. University Chemistry, 2025, 40(3): 390-401. doi: 10.12461/PKU.DXHX202409134

    3. [3]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    4. [4]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    5. [5]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    6. [6]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    7. [7]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    10. [10]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    11. [11]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    14. [14]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    15. [15]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    18. [18]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(1042)
  • Abstract views(2815)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return