Citation: LI Hong-Jian, LI An-Yang, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60[J]. Acta Physico-Chimica Sinica, ;2011, 27(09): 2072-2078. doi: 10.3866/PKU.WHXB20110816 shu

Molecular Dynamics Simulation of Effect of a Femtosecond Laser on the Photofragmentation Reaction Mechanism of C60

  • Received Date: 13 April 2011
    Available Online: 17 June 2011

    Fund Project: 国家自然科学基金(21073242)资助项目 (21073242)

  • The photofragmentation of C60 fullerene by an ultrafast laser pulse was studied by semiclassical molecular dynamics simulation. Two different laser pulses were used for this study: one with a duration of 40 fs FWHM (full width at half maximum) and the other with a duration of 500 fs FWHM. Both laser pulses had an energy of 2.0 eV. The simulation was run at different laser intensities for each laser pulse. The simulation results showed that a dominant amount of laser energy deposited to C60 fullerene was distributed into electronic energy. From the simulation we find that the electronic excitation from the occupied molecular orbitals to the unoccupied orbitals is closely related to the photofragmentation of C60 fullerene. By analyzing the fragmentation size distribution, the atomic equivalence index, the temperature, and the absorbed energy (including the electronic energy, the potential energy, and the kinetic energy), we found that non-thermal effects play a significant role in the laser fragmentation of C60 fullerene. By examining the fragmentation features of C60 fullerene with two different laser pulses we found that the laser pulse duration affects the fragmentation process significantly and that laser intensity has little effect on the fragmentation after the absorbed electronic energy becomes saturated.
  • 加载中
    1. [1]

      (1) David, J. T.; Ronnie, K.; Stuart, R. J. Chem. Phys. 1986, 85, 5805.  

    2. [2]

      (2) Assion, A.; Baumert, T.; Bergt, M.; Brixner, T.; Kiefer, B.; Seyfried, V.; Strehle, M.; Gerber, G. Science 1998, 282, 919.  

    3. [3]

      (3) Zewail, A. H. Adv. Chem. Phys. 1997, 101, 3.  

    4. [4]

      (4) Zhu,W. J. Chem. Phys. 1998, 108, 1953.  

    5. [5]

      (5) Zhu,W.; Rabitz, H. J. Chem. Phys. 1999, 111, 472.  

    6. [6]

      (6) Rabitz, H.; Vivie-Riedle, de. R.; Motzkus, M.; Kompa, K. Science 2000, 288, 824.  

    7. [7]

      (7) Bai, M. Z.; Cheng, L.; Tang, H.; Dou, Y. S. Acta Phys. -Chim. Sin. 2010, 26, 3143. [白明泽, 程丽, 唐红, 豆育升. 物理化学学报, 2010, 26, 3143.]

    8. [8]

      (8) Brien, S. C.; Heath, J. R.; Curl, R. F.; Smalley, R. E. J. Chem. Phys. 1988, 88, 220.  

    9. [9]

      (9) Lykke, K. R.;Wurz, P. J. Phys. Chem. 1992, 96, 3191.

    10. [10]

      (10) Lykke, K. R. Phys. Rev. A 1995, 52, 1354.  

    11. [11]

      (11) Boyle, M.; Laarmann, T.; Shchatsinin, I.; Schulz, C. P.; Hertel, I. V. J. Chem. Phys. 2005, 122, 181103.  

    12. [12]

      (12) Campbell, E. E. B.; Hansen, K.; Hoffmann, K.; Korn, G.; Tchaplyguine, M.;Wittmann, M.; Hertel, I. V. Phys. Rev. Lett. 2000, 84, 2128.  

    13. [13]

      (13) Bhardwaj, V. R.; Corkum, P. B.; Rayner, D. M. Phys. Rev. Lett. 2003, 91, 203004.  

    14. [14]

      (14) Boyle, M.; Hedén, M.; Schulz, C. P.; Campbell, E. E. B.; Hertel, I. V. Phys. Rev. A. 2004, 70, 051201.  

    15. [15]

      (15) Boyle, M.; Laarmann, T.; Hoffman, K.; Hedén, M.; Campbell, E. E. B.; Schulz, C. P.; Hertel, I. V. Eur. Phys. J. D 2005, 36, 339.  

    16. [16]

      (16) Dou, Y. S.; Torralva, B. R.; Allen, R. E. Chem. Phys. Lett. 2004, 392, 352.  

    17. [17]

      (17) Dou, Y. S.; Torralva, B. R.; Allen, R. E. J. Mod. Opt. 2003, 50, 2615.

    18. [18]

      (18) Dou, Y. S.; Lei, Y. B.; Li, A. Y.;Wen, Z. Y.; Torralva, B.; Lo, G.; Allen, R. J. Phys. Chem. A 2007, 111, 1133.  

    19. [19]

      (19) Graf, M.; Vogl, P. Phys. Rev. B 1995, 51, 4940.  

    20. [20]

      (20) Allen, R. E.; Dumitrica,T.; Torralva, B. R. Ultrafast Physical Processes in Semiconductors; Academic Press: New York, 2001; pp 85-90.

    21. [21]

      (21) Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Phys. Rev. B 1998, 58, 7260.  

    22. [22]

      (22) Swope,W. C.; Anderson, H. C.; Berens, P. H.;Wilson, K. R. J. Chem. Phys. 1982, 76, 637.  

    23. [23]

      (23) Ben, N. M.; Martínez, T. J. Adv. Chem. Phys. 2002, 124, 439.

    24. [24]

      (24) Bearpark, M. J.; Bernardi, F.; Olivucci, M.; Robb, M. A. Chem. Phys. Lett. 1994, 217, 513.  

    25. [25]

      (25) Horvath, L.; Bea, T. A. Phys. Rev. B 2008, 77, 075102.  

    26. [26]

      (26) Li, H. J.; Tang, H.; Dou, Y. S. Mol. Phys. 2009, 107, 2039.  

    27. [27]

      (27) Jeschke, H. O.; Garcia, M. E.; Alonso, J. A. Chem. Phys. Lett. 2002, 352, 154.  

    28. [28]

      (28) Xu, C.; Scuseria, G. E. Phys. Rev. Lett. 1994, 72, 669.  

    29. [29]

      (29) Kim, S. G.; Tom, D. Phys. Rev. Lett. 1994, 7, 2418.

  • 加载中
    1. [1]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    2. [2]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    5. [5]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    9. [9]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    10. [10]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    15. [15]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(1154)
  • Abstract views(2561)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return