Citation: SHEN Ying-Hua, LIU Hui-Min, LI Guo-Qing, ZHAI Zhi-Guo, SHU Xue-Feng, TAI Xiu-Mei. Rheological Properties and Gelation of pH-Responsive P(HEMA/MAA) Nano-Microgel Dispersions[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1919-1925. doi: 10.3866/PKU.WHXB20110815 shu

Rheological Properties and Gelation of pH-Responsive P(HEMA/MAA) Nano-Microgel Dispersions

  • Received Date: 7 March 2011
    Available Online: 17 June 2011

    Fund Project: 山西省自然科学基金(2010011032-2) (2010011032-2)山西省研究生优秀创新项目(20103036)资助 (20103036)

  • Poly((2-hydroxyethyl methacrylate)-co-(methacrylic acid)) (P(HEMA/MAA)) microgels with potential application in the restoration of damaged tissue were prepared. The phase transition behavior of P(HEMA/MAA) microgel dispersions at different pH values and concentrations as well as rheological properties of diluent and concentrated dispersions were investigated by tube inversion measurements and rheometry, respectively. The mechanism of the pH-induced physical gel phase transition was discussed. The results indicate that P(HEMA/MAA) microgel dispersions at a given concentration can be transformed into a macroscopic gel for gelation at a physiological pH. The mechanical strength of the P(HEMA-co-MAA) macroscopic gel (nHEMA/nMAA=8/2, pH=7.0) is the best and the elastic modulus (G') value can reach 7.58×103 Pa. The swelling effects of the P(HEMA/MAA) microgel are different under different conditions, which results in a variety of apparent viscosities for the diluent dispersions. We deduce that the swelling behavior of the microgel particles can be divided into three stages from the outer parts of the particles to the inner parts. The gelation transitions of the concentrated dispersions are caused synergistically by space electrostatic interactions and hydrogen bonds of the neighboring microgel particles or between microgel particles and water molecules.

  • 加载中
    1. [1]

      (1) Bradley, M.; Ramos, J.; Vincent, B. Langmuir 2005, 21, 1209.  

    2. [2]

      (2) Martina, K.; Jan, S. P.;Walter, R. J. Am. Chem. Soc. 2009, 131, 3093.  

    3. [3]

      (3) Shen, Y. H.; Zhang, X. Y.; Lu, J. J.; Zhang, A. Q.; Chen, K.; Li, X. Q. Colloids and Surfaces A: Physicochem. Eng. Aspects 2009, 350, 87.  

    4. [4]

      (4) Amalvy, J. I.;Wanless, E. J.; Li, Y. Langmuir 2004, 20, 8992.  

    5. [5]

      (5) Neyret, S.; Vincent, B. Polymer 1997, 38, 6129.  

    6. [6]

      (6) Kaneda, I.; Vincent, B. J. Colloid Interface Sci. 2004, 274, 49.  

    7. [7]

      (7) Oh, J. K.; Drumright, R.; Siegwart, D. J.; Siegwart, K. M. Prog. Polym. Sci. 2008, 33, 448.  

    8. [8]

      (8) Sirpal, S.; Gattas-Asfura, K. M.; Leblanc, R. M. Colloids Surf. B 2007, 58, 116.  

    9. [9]

      (9) Nolan, C. M.; Reyes, C. D.; Debord, J. D.; Garcia, A. J.; Lyon, L. A. Biomacromolecules 2005, 6, 2032.  

    10. [10]

      (10) Jia, X. Q.; Yeo, Y.; Clifton, R. J.; Jia, X.; Yeo, Y.; Clifton, R. J.; Jiao, T.; Kohane, D. S.; Kobler, J. B.; Zeitels, S. M.; Langer, R. Biomacromolecules 2006, 7, 3336.  

    11. [11]

      (11) Shivkumar, V. G.; Ester, C.; Mark, T. F. T.; Antonio, D.; Yuri, G.; Joachim,W.; Gaio, P. J. Phys. Chem. B 2010, 114, 10285.  

    12. [12]

      (12) Shaun, C. H.; Craig, V. S. J.; Paul, A.; Fitz, G.; Erica, J.W. Langmuir 2010, 26, 14615.  

    13. [13]

      (13) Saunders, B. R.; Saunders, J. M.; Tong, T. Soft Matter. 2007, 3, 486.  

    14. [14]

      (14) Kapoor, Y.; Thomas, J. C.; Tan, G.; John, V. T.; Chauhan, A. Biomaterials 2009, 30, 867.  

    15. [15]

      (15) Kim, B.; Peppas, N. A. J. Biomater. Sci. Polym. Edit. 2002, 13, 1271.  

    16. [16]

      (16) Sarah, L.; Paul, M.; Christine, L. L.; Tony, J. F.; Brian, R. S. J. Colloid Interface Sci. 2007, 316, 367.  

    17. [17]

      (17) Seifert, L. M.; Green, R. T. J. Biomed. Mater. Res. 1985, 9, 1043.

    18. [18]

      (18) Okano, T.; Aoyagi, T.; Kataoka, K.; Abe, K.; Sakurai, Y.; Shimadada, M.; Shinohara, I. J. Biomed. Mater. Res. 1986, 20, 919.  

    19. [19]

      (19) Shen, Y. H.; Zhang, X. Y.; Li, X. Q.;Wu, L.W.; Zhao, Y. S.; Guo, J. Acta Polym. Sin. 2009, No. 9, 917. [申迎华, 张向英, 李晓琴, 武六旺, 赵彦生, 郭健. 高分子学报, 2009, No. 9, 917.]

    20. [20]

      (20) Limain, F.; Tanaka, T.; Kokufuta, E. Nature 1991, 349, 400.  

    21. [21]

      (21) Tan, B. H. K.; Tam, K. C. Adv. Colloid Interface Sci. 2008, 136, 25.  

    22. [22]

      (22) Tan, B. H. K.; Tam, K. C.; Lam, Y. C.; Tan, C. B. J. Rheol. 2004, 48, 915.  

    23. [23]

      (23) Tan, B. H. K.; Tam, K. C.; Lam, Y. C.; Tan, C. B. Polymer 2004, 45, 5515.  

    24. [24]

      (24) An, Y.; Xu, J.; Zhang, J.; Hu, C. G.; Li, G. Z.;Wang, Z. N.; Wang, Z. N.; Zhang, X. Y.; Zheng, L. Q. Sci. China B Chem. 2006, 36 (3), 234. [安娅, 徐军, 张晋, 胡长刚, 李干佐, 王志宁, 王仲妮, 张笑一, 郑利强. 中国科学B化学, 2006, 36 (3), 234.]

    25. [25]

      (25) Zhang, J. H. Acta Phys. -Chim. Sin. 2003, 19 (1), 90. [张建合. 物理化学学报, 2003, 19 (1), 90.]

    26. [26]

      (26) Andrew, M.; Howe, S.; Desrousseaux, L. S.; Lunel, J. T. Adv. Colloid Interface Sci. 2009, 147, 124.  


  • 加载中
    1. [1]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    6. [6]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    7. [7]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    8. [8]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    15. [15]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    16. [16]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    17. [17]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    18. [18]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    19. [19]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    20. [20]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

Metrics
  • PDF Downloads(1091)
  • Abstract views(2465)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return