Citation: WANG Xi-Zhao, FU Rong, ZHENG Jun-Sheng, Ma Jian-Xin. Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1875-1880. doi: 10.3866/PKU.WHXB20110813 shu

Platinum Nanoparticles Supported on Carbon Nanofibers as Anode Electrocatalysts for Proton Exchange Membrane Fuel Cells

  • Received Date: 4 March 2011
    Available Online: 16 June 2011

    Fund Project: 国家自然科学基金(21006073) (21006073)上海市青年科技启明星计划(11QA1407200) (11QA1407200)上海市重点学科(B303) (B303)化学工程联合国家重点实验室开放基金(SKL-ChE-08C07)资助项目 (SKL-ChE-08C07)

  • Pt nanoparticles supported on carbon nanofibers (Pt/CNFs) with different microstructure, i.e., platelet CNF (Pt/p-CNF), fish-bone CNF (Pt/f-CNF), and tubular CNF (Pt/t-CNF) were synthesized by a chemical reduction method. X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were applied to characterize the structure of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). Membrane electrode assemblies (MEAs) with the as-prepared catalysts were fabricated and tested. We found that Pt nanoparticles showed different particle size and dispersion on the three kinds of CNF supports and the mean size of the Pt nanoparticles on p-CNF, f-CNF, and t-CNF was 2.4, 2.7, and 2.8 nm, respectively. Single cell testing indicated that the cell with Pt/p-CNF as the anode catalyst gave better performance compared to Pt/f-CNF and Pt/t-CNF. The maximum power density was 0.569 W·cm-2 for Pt/p-CNF, which was higher than that for Pt/f-CNF (0.550 W·cm-2) and Pt/t-CNF (0.496 W·cm-2). Furthermore, Pt nanoparticles supported on carbon black (Pt/XC-72) were also prepared. Pt nanoparticles supported on CNFs have been shown to have a smaller particle size and better dispersion than those on XC-72, and this proves that CNFs can be an efficient electrocatalyst support for proton exchange membrane fuel cells (PEMFCs).

  • 加载中
    1. [1]

      (1) Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133.  

    2. [2]

      (2) Yu, J. S.; Kang, S.; Yoon, S. B.; Chai, G. S. J. Am. Chem. Soc. 2002, 124, 9382.  

    3. [3]

      (3) Chai, G. S.; Shin, I. S.; Yu, J. S. Adv. Mater. 2004, 16, 2057.  

    4. [4]

      (4) Fang, B.; Kim, M. S.; Yu, J. S. Appl. Catal. B-Environ. 2008, 84, 100.  

    5. [5]

      (5) Dicks, A. J. Power Sources 2006, 156, 128.  

    6. [6]

      (6) Kong, K.; Choi, Y.; Ryu, B.; Lee, J.; Chang, H. Mater. Sci. Eng. C 2006, 26, 1207.  

    7. [7]

      (7) Park, C.; Baker, R. J. Phys. Chem. B 1999, 103, 2453.  

    8. [8]

      (8) Steigerwalt, E. S.; Deluga,G. A.; Cliffel, D. E.; Lukehart, C. M. J. Phys. Chem. B 2001, 105, 8097.  

    9. [9]

      (9) Rodriguez, N. M.; Chambers, A.; Baker, R. Langmuir 1995, 11, 3862.  

    10. [10]

      (10) Sun, X.; Li, R.; Villers, D.; Dodelet, J. P.; Desilets, S. Chem. Phys. Lett. 2003, 379, 99.  

    11. [11]

      (11) Salgado, J. R. C.; Antolini, E.; nzalez, E. R. J. Power Sources 2004, 138, 56.  

    12. [12]

      (12) Francisco, A.; Oscar, M.; María, J.; Rafael, M.; Ana, L.; José, S.; Enrique, H.; Antonio, A. Electrochem. Commun. 2009, 11, 1081.  

    13. [13]

      (13) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhou, X. G.; Yuan,W. K. Catal. Today 2008, 131, 270.  

    14. [14]

      (14) Calvillo, L.; Lázaro, M. J.; Suelves, I.; Eche yen, Y.; Bordejé, E. G.; Moliner, R.; Nanosci, J. Nanotechnology 2009, 9, 1.

    15. [15]

      (15) Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B, 2002, 106, 760.  

    16. [16]

      (16) Antolini, E. Appl. Catal. B 2009, 88, 1.  

    17. [17]

      (17) Zheng, J. S.;Wang, X. Z.; Qiao, J. L.; Yang, D. J.; Li B.; Li, P.; lv, H.; Ma, J. X. Electrochem. Commun. 2010, 12, 27.  

    18. [18]

      (18) Gangeri, M.; Centi, G.; La Malfa, A.; Perathoner, S.; Vieira, R.; Pham-Huu, C.; Ledoux, M. J. Catal. Today 2005, 102, 50.  

    19. [19]

      (19) Yuan, F.; Ryu, H. Nanotechnology 2004, 15, 596.  

    20. [20]

      (20) Zheng, J. S.; Zhang, X. S.; Li, P.; Zhu, J.; Zhou, X. G.; Yuan,W. K. Electrochem. Commun. 2007, 9, 895.  

    21. [21]

      (21) Li, B.; Qiao, J. L.; Zheng, J. S.; Yang, D. J.; Ma, J. X. Int. J. Hydrog. Energy 2009, 34, 5144.  

    22. [22]

      (22) Zheng, J. S. Microstructure Effect of Carbon Nanofibers on Electrocatalysis: Oxygen Reduction Properties on Cathode. Ph. D. Dissertation, Shanghai, East China University of Science and Technology, 2008.

    23. [23]

      (23) He. Z. B.; Chen, J. H.; Liu, D. Y.; Zhou, H. H.; Kuang, Y. F. Diamond Relat. Mater. 2004, 13, 1764.  

    24. [24]

      (24) Augustine, R. L. Heterogeneous Catalysis for the Synthetic Chemist; New York: Marcel Dekker, 1996; p 170.

    25. [25]

      (25) Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem. B 2003, 107, 6292.  

    26. [26]

      (26) Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal. 1995, 154, 98.  

    27. [27]

      (27) Perez, J.; nzalez, E. R.; Ticianelli, E. A. Electrochim. Acta 1998, 44, 1329.  

    28. [28]

      (28) Lima, F. H. B.; Ticianelli, E. A. Electrochim. Acta 2004, 49, 4091.  

    29. [29]

      (29) Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem. 2002, 12, 2453.  


  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    5. [5]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    10. [10]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    14. [14]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    17. [17]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Shiqi Zhang Heng Zhang Aiwen Lei . 从物理化学的角度看化学能的利用. University Chemistry, 2025, 40(6): 310-315. doi: 10.12461/PKU.DXHX202408124

Metrics
  • PDF Downloads(1111)
  • Abstract views(3231)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return