Citation: ZHAO Jing, SUN Yue, LI Yong-Jun, LIANG Ren. Preparation of ‘Sandwich-Like’ Au/Pt Composite Multilayer Films for Methanol Electrooxidation[J]. Acta Physico-Chimica Sinica, ;2011, 27(08): 1868-1874. doi: 10.3866/PKU.WHXB20110803 shu

Preparation of ‘Sandwich-Like’ Au/Pt Composite Multilayer Films for Methanol Electrooxidation

  • Received Date: 11 April 2011
    Available Online: 8 June 2011

    Fund Project: 国家自然科学基金(20703016) (20703016) 湖南省科技计划(2010FJ6030) (2010FJ6030)固体表面物理化学国家重点实验室(厦门大学)开放课题经费资助 (厦门大学)

  • Pt/Au composite monolayer films were fabricated by combining interfacial assembly and under-potential deposition (UPD) with redox replacement. Based on the Pt/Au composite monolayers, an organic linker-free method was proposed for the fabrication of sandwich-like Pt/Au composite multilayer films: (Pt/Au)n, Ptm/Au, and (Pt3/Au)k (n, m, or k represents the layer number). Electron microscopy was used to characterize the morphologies of the Au monolayer films and the Pt/Au composite multilayer films. For each type of composite multilayer films, a common characteristic was that the effective electroactive areas increased with an increase in the layer number. Additionally, the electrocatalytic activities of the composite multilayer films for methanol electrooxidation are systematically discussed by examining the catalytic current densities and its tolerance toward carbonaceous species. For the same series of composite multilayer films (Pt/Au)3, Pt3/Au, and (Pt3/Au)2 showed a higher catalytic current density than bulk Pt (Ptbulk). Among the three composite multilayer films, (Pt/Au)3 showed the best catalytic performance in terms of the current density and tolerance toward carbonaceous species. The tolerance of (Pt/Au)3 to carbonaceous species was found to be better than that of the commercial Pt/C catalyst. This better electrocatalytic activity may be attributed to the maximum synergistic effect between Au and Pt, which depends on the Pt:Au atomic ratio and also the arrangement of Pt and Au nanoparticles.

  • 加载中
    1. [1]

      (1) Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.  

    2. [2]

      (2) Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.;Wang, H. J.; Wilkinson, D. P. J. Power Sources 2006, 155, 95.  

    3. [3]

      (3) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.  

    4. [4]

      (4) Iwasita, T.; Hoster, H.; John-Anacker, A.; Lin,W. F.; Vielstich, W. Langmuir 1999, 16, 522.

    5. [5]

      (5) Liu, Z.; Reed, D.; Kwon, G. M.; Shamsuzzoha, D.; Nikles, E. J. Phys. Chem. C 2007, 111, 14223.  

    6. [6]

      (6) Zhou, S. G.; McIlwrath, K.; Jackson, G.; Eichhorn, B. J. Am. Chem. Soc. 2006, 128, 1780.  

    7. [7]

      (7) Guo, S. J.; Zhai, J. F.; Fang, Y.X.; Dong, S. J.;Wang, E. Chem. Asian J. 2008, 3, 1156.  

    8. [8]

      (8) Zhao, D.; Xu, B. Q. Angew. Chem. Int. Edit. 2006, 45, 4955.  

    9. [9]

      (9) Kiani, A.; Fard, E. N. Electrochim. Acta 2009, 54, 7254.  

    10. [10]

      (10) Du, Y.; Xu, J. J.; Chen, H. Y. Electrochem. Commun. 2009, 11, 1717.  

    11. [11]

      (11) Wang, J. J.; Yin, G. P.;Wang, G. J.;Wang, Z. B.; Gao, Y. Z. Electrochem. Commun. 2008, 10, 831.  

    12. [12]

      (12) Markovic, N. M.; Ross, P. N. Surf. Sci. Rep. 2002, 45, 117.  

    13. [13]

      (13) Mott, D.; Luo, J.; Njoki, P. N.; Lin, Y.;Wang, L. Y.; Zhong, C. J. Catal. Today 2007, 122, 378.  

    14. [14]

      (14) Zeng, J. H.; Yang, J.; Lee, J. Y.; Zhou,W. J. J. Phys. Chem. B 2006, 110, 24606.  

    15. [15]

      (15) Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. J. Am. Chem. Soc. 2005, 127, 12480.  

    16. [16]

      (16) Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Edit. 2005, 44, 2132.  

    17. [17]

      (17) Du, B. C.; Tong,Y. Y. J. Phys. Chem. B 2005, 109, 17775.  

    18. [18]

      (18) Hammer, B.; Morikawa, Y.; Norskov, J. K. Phys. Rev. Lett. 1996, 76, 2141.  

    19. [19]

      (19) Hammer, B.; Norskov, J. K. Adv. Catal. 2000, 45, 71.  

    20. [20]

      (20) Park, S.; Yang, P.; Corredor, P.;Weaver, M. J. J. Am. Chem. Soc. 2002, 124, 2428.  

    21. [21]

      (21) Aramata, A.; Modern Aspects of Electrochemistry, Vol. 31; Bockris, J. O. M.; White, R. E.; Conway, B. E. Eds, Kluwer Academic Publishers: New York, 1998; pp 181-250.

    22. [22]

      (22) Tang, H.; Chen, J. H.;Wang, M. Y.; Nie, L. H.; Kuang,Y. F.; Yao, S. Z. Appl. Catal. A 2004, 275, 43.  

    23. [23]

      (23) Shin, T. Y.; Yoo, S. H.; Park, S. Chem. Mater. 2008, 20, 5682.  

    24. [24]

      (24) Liu, P. P.; Ge, X. B.;Wang, R. Y.; Ma, H. Y.; Ding,Y. Langmuir 2009, 25, 561.  

    25. [25]

      (25) Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung,Y. E. J. Phys. Chem. C 2007, 111, 19126.  

    26. [26]

      (26) Ge, X.;Wang, R.; Liu, P.; Ding,Y. Chem. Mater. 2007, 19, 5827.  

    27. [27]

      (27) Kumar, S.; Zou, S. Z. Langmuir 2007, 23, 7365.  

    28. [28]

      (28) Patra, S.; Das, J.; Yang, H. Electrochim. Acta 2009, 54, 3441.  

    29. [29]

      (29) Huang, M.; Jin, Y.; Jiang, H.; Sun, X.; Chen, H.; Liu, B.;Wang, E.; Dong, S. J. Phys. Chem. B 2005, 109, 15264.  

    30. [30]

      (30) Li, Y. J.; Huang,W. J.; Sun, S. G. Angew. Chem. Int. Edit. 2006, 45, 2537.  

    31. [31]

      (31) Liu, C.; Li, Y. J.;Wang, M. H.; He, Y.; Yeung, E. S. Nanotechnology 2009, 20, 065604.  

    32. [32]

      (32) Wang, M. H.; Li, Y. J.; Xie, Z. X.; Liu, C.; Yeung, E. S. Mater. Chem. Phys. 2010, 119, 153.  

    33. [33]

      (33) Wang, M. H.; Hu, J.W.; Li, Y. J.; Yeung, E. S. Nanotechnology 2010, 21, 145608.  

    34. [34]

      (34) Li, Y. J.; Liu, C.; Yang, M. H.; He, Y.; Yeung, E. S. J. Electroanal. Chem. 2008, 622, 103.  

    35. [35]

      (35) Frens, G. Nat. Phys. Sci. 1973, 241, 20.

    36. [36]

      (36) Uosaki, K.; Ye, S.; Naohara, H.; Oda, Y.; Haba, T.; Kondo, T. J. Phys. Chem. B 1997, 101, 7566.  

    37. [37]

      (37) Kolb, D. M. Adv. Electrochem. Electrochem. Eng. 1978, 11, 125.

    38. [38]

      (38) Mrozek, M. F.; Xie, Y.;Weaver, M. J. Anal. Chem. 2001, 73, 5953.  

    39. [39]

      (39) Brankovic, S. R.;Wang, J. X.; Adzic, R. R. Surf. Sci. 2001, 474, L173.

    40. [40]

      (40) Maillard, F.; Eikerling, M.; Cherstiouk, O. V.; Schreier, S.; Savinova, E.; Stimming, U. Faraday Discuss. 2004, 125, 357.  

    41. [41]

      (41) Mayrhofer, K. J. J.; Arenz, M.; Blizanac, B. B.; Stamenkovic, V.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2005, 50, 5144.  

    42. [42]

      (42) Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2005, 127, 6819.  

    43. [43]

      (43) Biegler, T.; Rand, D. A. J.;Woods, R. J. Electroanal. Chem. 1971, 29, 269.  

    44. [44]

      (44) Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B 2004, 108, 8234.  

    45. [45]

      (45) Chang, S. C.; Ho, Y.;Weaver, M. J. Surf. Sci. 1992, 265, 81.  

    46. [46]

      (46) Park, S.; Xie, Y.;Weaver, M. J. Langmuir 2002, 18, 5792.  

    47. [47]

      (47) Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.;Wang, J. X.; Hanson, J.; Adzic, R. R. J. Phys. Chem. B 2005, 109, 22701.  

    48. [48]

      (48) Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. J. Phys. Chem. B 2004, 108, 10955.  


  • 加载中
    1. [1]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    2. [2]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    6. [6]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    15. [15]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    16. [16]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    17. [17]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    18. [18]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    19. [19]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(966)
  • Abstract views(2771)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return