Citation: DING Ying-Chun, XIAO Bing. Electronic Structure, Mechanical Properties and Intrinsic Hardness of a New Superhard Material BeP2N4[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1621-1632. doi: 10.3866/PKU.WHXB20110730 shu

Electronic Structure, Mechanical Properties and Intrinsic Hardness of a New Superhard Material BeP2N4

  • Received Date: 29 March 2011
    Available Online: 1 June 2011

  • First-principles calculations were carried out to investigate the crystal structures, band structure, density of states, partial densities of states, Mulliken population and elastic properties of two BeP2N4 polymorphs namely phenakite and spinel. The generalized gradient approximation (GGA) and local density approximation (LDA) were used. The calculated results agree well with the experimental data and other theoretical calculations. The electronic structures of BeP2N4 indicate that they are insulators with wide bandgaps. The mechanical moduli of the spinel structure are larger than that of phenakite. The hardness of the two polymorphs was evaluated based on the methods proposed by Sung and Gao et al. Although the bulk modulus of phenakite is small the results indicate that it is a relatively hard material. On the other hand, the spinel structure is a super hard phase. When the pressure increases the phenakite structure gradually becomes malleable. The calculated GGA transition pressure from phenakite to spinel is 14 GPa, which is smaller than the predicted value of 24 GPa.

  • 加载中
    1. [1]

      (1) Solozhenko, V. L.; Andrault, D.; Fiquet, G.; Mezouar, M.; Rubie, D. C. Appl. Phys. Lett. 2001, 78, 2228.

    2. [2]

      (2) Zhao, Y.; He, D.W.; Daemen, L. L.; Shen, T. D.; Schwarz, R. B.; Zhu, Y.; Bish, D. L.; Huang, J.; Zhang, J.; Shen, G.; Qian, J.; Zerda, T.W. J. Mater. Res. 2002, 17, 3139.  

    3. [3]

      (3) Zerr, A.; Miehe, G.; Serghiou, G.; Schwarz, M.; Kroke, E.; Riedel, R.; Fuess, H.; Kroll, P.; Boehler, R. Nature 1999, 400, 340.  

    4. [4]

      (4) Jiang, J. Z.; Kragh, F.; Frost, D. J.; Stahl, K.; Lindelov, H. J. Phys: Condens Mater. 2001, 13, L515.

    5. [5]

      (5) Kroke, E. Angew. Chem. Int. Edit. 2002, 41, 77.  

    6. [6]

      (6) Leinenweber, K.; O'Keeffe, M.; Somayazulu, M.; Hubert, H.; McMillan, P. F.;Wolf, G. H. Chem. Eur. J. 1999, 5, 3076.  

    7. [7]

      (7) Serghiou, G.; Miehe, G.; Tschauner, O.; Zerr, A.; Boehler, R. J. Chem. Phys. 1999, 111, 4659.  

    8. [8]

      (8) Scotti, N.; Kockelmann,W.; Senker, J.; Trassel, S.; Jacobs, H. Z. Anorg. Allg. Chem. 1999, 625, 1435.

    9. [9]

      (9) Shemkunas, M. P.;Wolf, G. H.; Leinenweber, K.; Petuskey,W. T. J. Am. Ceram. Soc. 2002, 85, 101.

    10. [10]

      (10) Zerr, A.; Miehe, G.; Riedel, R. Nat. Mater. 2003, 2, 185.  

    11. [11]

      (11) Gre r, Y. E.; Sanloup, C.; Somayazulu, M.; Badro, J.; Fiquet, G.; Mao, H. K.; Hemley, R. J. Nat. Mater. 2004, 3, 294.  

    12. [12]

      (12) Corwhurst, J. C.; ncharov, A. F.; Sadigh, B.; Evans, C. L.; Morral, P. G.; Ferreira, J. L.; Nelson, A. J. Science 2006, 311, 1275.  

    13. [13]

      (13) Karau, F.W.; Seyfarth, L.; Oeckler, O.; Senker, J.; Schnick,W. Chem. Eur. J. 2007, 13, 6841.  

    14. [14]

      (14) Karau, F.W.; Schnick,W. Z. Anorg. Allg. Chem. 2006, 632, 231.  

    15. [15]

      (15) Ma, Y. M.; Eremets, M.; Oganov, A. R.; Xie, Y.; Trojan, I.; Medvedev, S.; Lyakhov, A. O.; Valle, M.; Prakapenka, A. V. Nature 2009, 458, 182.  

    16. [16]

      (16) Li, Q.;Wang, M.; Oganov, A. R.; Cui, T.; Ma, Y. M.; Zou, G. T. J. Appl. Phys. 2009, 105, 053514.  

    17. [17]

      (17) Xia, Y.; Li, Q.; Ma, Y. M. Comp. Mater. Sci. 2010, 49, S76.

    18. [18]

      (18) Wang, H. B.; Li, Q.;Wang, H.; Liu, H. Y.; Cui, T.; Ma, Y. M. J. Phys. Chem. C 2010, 114, 8609.  

    19. [19]

      (19) Pucher, F. J.; Römer, S. R.; Karau, F.W.; Schnick,W. Chem. Eur. J. 2010, 16, 7208.

    20. [20]

      (20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    21. [21]

      (21) Perdew, J. P.;Wang, Y. Phy. Rev. B 1992, 46, 12947.  

    22. [22]

      (22) Brich, F. J. Geophys. Res. 1978, 83, 1257.  

    23. [23]

      (23) Xiao, B.; Xing, J. D.; Feng, J.; Li, Y. F.; Zhou, C. T.; Xie, X. J.; Chen, Y. H. Physica B 2008, 403, 2273.  

    24. [24]

      (24) Feng, J.; Chen, J. C.; Xiao, B.; Zhou, C. T.; Hong, Z. J.; Zhou, R. Physica B 2009, 404, 246.

    25. [25]

      (25) Hamann, D. R. Phys. Rev. Lett. 1996, 76, 660.  

    26. [26]

      (26) Zupan, A.; Blaha, P.; Schwarz, K.; Perdew, J. P. Phys. Rev. B 1998, 58, 11266.  

    27. [27]

      (27) Patil, S. K. R.; Khare, S. V.; Tuttle, B. R.; Bording, J. K.; Kodambaka, S. Phys. Rev. B 2006, 73, 104118.  

    28. [28]

      (28) Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Phys. Rev. B 2007, 76, 054115.  

    29. [29]

      (29) Hou, Y. Q.; Zhang, X. D.; Jiang, Z. Y. Acta Phys. Sin. 2010, 59, 5667. [侯榆青, 张小东, 姜振益. 物理学报, 2010, 59, 5667.]

    30. [30]

      (30) Zhao, J. J.;Winey, J. M.; Gupta, Y. M. Phys. Rev. B 2007, 75, 094105.  

    31. [31]

      (31) Reuss, A. Z. Angew. Math. Mech. 1929, 9, 49.  

    32. [32]

      (32) Hill, R. Proc. Phys. Soc. 1952, 65, 349.  

    33. [33]

      (33) Zerr, A.; Kempf, M.; Schwarz, M.; Kroke, E.; Gǒken, M.; Riedel, R. J. Am. Ceram. Soc., 2002, 85, 86.

    34. [34]

      (34) Jiang, J. Z.; Lindelov, H.; Gerward, L.; Stahl, K.; Recio, J. M.; MoriSanchez, P.; Carlson, S.; Mezouar, M.; Dooryhee, E.; Fitch, A.; Frost, D. J. Phys. Rev. B, 2002, 65, 161202.  

    35. [35]

      (35) Kroll, P.; Milko, M. Z. Anorg. Allg. Chem. 2003, 629, 1737.  

    36. [36]

      (36) Li, Y. F.; Gao, Y. M.; Xiao, B.; Min, T.; Fan, Z. J.; Ma, S. Q.; Xu, L. L. J. Alloy. Compd. 2010, 502, 28.  

    37. [37]

      (37) Li, D. H.; Zhu, X. L.; Su,W. J.; Cheng, X. L. Acta Phys. Sin. 2010, 59, 2004. [李德华, 朱晓玲, 苏文晋, 程新路. 物理学报, 2010, 59, 2004.]

    38. [38]

      (38) Ravindran, P.; Fast, L.; Korzhavyi, P. A.; Johansson, B.;Wills, J.; Eriksson, O. J. Appl. Phys. 1998, 84, 4891.  

    39. [39]

      (39) Ranganathan, S. I .; Starzewski, M. O. Phys. Rev. Lett. 2008, 101, 055504.  

    40. [40]

      (40) Sung, C. M.; Sung, M. Mater. Chem. Phys. 1996, 43, 1.  

    41. [41]

      (41) Ching,W. Y.; Mo, S. D.; Ouyang, L.; Rulis, P.; Tanaka, I.; Yoshiya, M. J. Amer. Ceram. Soc. 2002, 85, 75.

    42. [42]

      (42) Letsoalo, T.; Lowther, J. E. Physica B 2008, 403, 2760.  

    43. [43]

      (43) Gilman, J. J.; Cumberland, R.W.; Kaner, R. B. Int. J. Refractory Metals & Hard Mater. 2006, 24, 1.

    44. [44]

      (44) Gao, F. M.; He, J. L.;Wu, E. D.; Liu, S. M.; Yu, D. L.; Tian, Y. J. Phys. Rev. Lett. 2003, 91, 11237.

    45. [45]

      (45) Ahmed, R.; Aleem, F. E.; Hashemifar, S. J.; Akbarzadeh, H. Physica B 2008, 403, 1876.  

    46. [46]

      (46) Xiao, B.; Feng, J.; Zhou, C. T.; Xing, J. D.; Xie, X. J.; Cheng, Y. H.; Zhou, R. Physica B 2010, 405, 1274.  

    47. [47]

      (47) Gao, F. M. Phys. Rev. B 2006, 73, 132104.  

    48. [48]

      (48) Wang, H. Y.; Chen, X. R.; Zhu,W. J.; Cheng, Y. Phys. Rev. B 2005, 72, 172502.  


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    7. [7]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    12. [12]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    13. [13]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    14. [14]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    17. [17]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

Metrics
  • PDF Downloads(1629)
  • Abstract views(3114)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return