Citation: DING Ying-Chun, XIAO Bing. Electronic Structure, Mechanical Properties and Intrinsic Hardness of a New Superhard Material BeP2N4[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1621-1632. doi: 10.3866/PKU.WHXB20110730 shu

Electronic Structure, Mechanical Properties and Intrinsic Hardness of a New Superhard Material BeP2N4

  • Received Date: 29 March 2011
    Available Online: 1 June 2011

  • First-principles calculations were carried out to investigate the crystal structures, band structure, density of states, partial densities of states, Mulliken population and elastic properties of two BeP2N4 polymorphs namely phenakite and spinel. The generalized gradient approximation (GGA) and local density approximation (LDA) were used. The calculated results agree well with the experimental data and other theoretical calculations. The electronic structures of BeP2N4 indicate that they are insulators with wide bandgaps. The mechanical moduli of the spinel structure are larger than that of phenakite. The hardness of the two polymorphs was evaluated based on the methods proposed by Sung and Gao et al. Although the bulk modulus of phenakite is small the results indicate that it is a relatively hard material. On the other hand, the spinel structure is a super hard phase. When the pressure increases the phenakite structure gradually becomes malleable. The calculated GGA transition pressure from phenakite to spinel is 14 GPa, which is smaller than the predicted value of 24 GPa.

  • 加载中
    1. [1]

      (1) Solozhenko, V. L.; Andrault, D.; Fiquet, G.; Mezouar, M.; Rubie, D. C. Appl. Phys. Lett. 2001, 78, 2228.

    2. [2]

      (2) Zhao, Y.; He, D.W.; Daemen, L. L.; Shen, T. D.; Schwarz, R. B.; Zhu, Y.; Bish, D. L.; Huang, J.; Zhang, J.; Shen, G.; Qian, J.; Zerda, T.W. J. Mater. Res. 2002, 17, 3139.  

    3. [3]

      (3) Zerr, A.; Miehe, G.; Serghiou, G.; Schwarz, M.; Kroke, E.; Riedel, R.; Fuess, H.; Kroll, P.; Boehler, R. Nature 1999, 400, 340.  

    4. [4]

      (4) Jiang, J. Z.; Kragh, F.; Frost, D. J.; Stahl, K.; Lindelov, H. J. Phys: Condens Mater. 2001, 13, L515.

    5. [5]

      (5) Kroke, E. Angew. Chem. Int. Edit. 2002, 41, 77.  

    6. [6]

      (6) Leinenweber, K.; O'Keeffe, M.; Somayazulu, M.; Hubert, H.; McMillan, P. F.;Wolf, G. H. Chem. Eur. J. 1999, 5, 3076.  

    7. [7]

      (7) Serghiou, G.; Miehe, G.; Tschauner, O.; Zerr, A.; Boehler, R. J. Chem. Phys. 1999, 111, 4659.  

    8. [8]

      (8) Scotti, N.; Kockelmann,W.; Senker, J.; Trassel, S.; Jacobs, H. Z. Anorg. Allg. Chem. 1999, 625, 1435.

    9. [9]

      (9) Shemkunas, M. P.;Wolf, G. H.; Leinenweber, K.; Petuskey,W. T. J. Am. Ceram. Soc. 2002, 85, 101.

    10. [10]

      (10) Zerr, A.; Miehe, G.; Riedel, R. Nat. Mater. 2003, 2, 185.  

    11. [11]

      (11) Gre r, Y. E.; Sanloup, C.; Somayazulu, M.; Badro, J.; Fiquet, G.; Mao, H. K.; Hemley, R. J. Nat. Mater. 2004, 3, 294.  

    12. [12]

      (12) Corwhurst, J. C.; ncharov, A. F.; Sadigh, B.; Evans, C. L.; Morral, P. G.; Ferreira, J. L.; Nelson, A. J. Science 2006, 311, 1275.  

    13. [13]

      (13) Karau, F.W.; Seyfarth, L.; Oeckler, O.; Senker, J.; Schnick,W. Chem. Eur. J. 2007, 13, 6841.  

    14. [14]

      (14) Karau, F.W.; Schnick,W. Z. Anorg. Allg. Chem. 2006, 632, 231.  

    15. [15]

      (15) Ma, Y. M.; Eremets, M.; Oganov, A. R.; Xie, Y.; Trojan, I.; Medvedev, S.; Lyakhov, A. O.; Valle, M.; Prakapenka, A. V. Nature 2009, 458, 182.  

    16. [16]

      (16) Li, Q.;Wang, M.; Oganov, A. R.; Cui, T.; Ma, Y. M.; Zou, G. T. J. Appl. Phys. 2009, 105, 053514.  

    17. [17]

      (17) Xia, Y.; Li, Q.; Ma, Y. M. Comp. Mater. Sci. 2010, 49, S76.

    18. [18]

      (18) Wang, H. B.; Li, Q.;Wang, H.; Liu, H. Y.; Cui, T.; Ma, Y. M. J. Phys. Chem. C 2010, 114, 8609.  

    19. [19]

      (19) Pucher, F. J.; Römer, S. R.; Karau, F.W.; Schnick,W. Chem. Eur. J. 2010, 16, 7208.

    20. [20]

      (20) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.  

    21. [21]

      (21) Perdew, J. P.;Wang, Y. Phy. Rev. B 1992, 46, 12947.  

    22. [22]

      (22) Brich, F. J. Geophys. Res. 1978, 83, 1257.  

    23. [23]

      (23) Xiao, B.; Xing, J. D.; Feng, J.; Li, Y. F.; Zhou, C. T.; Xie, X. J.; Chen, Y. H. Physica B 2008, 403, 2273.  

    24. [24]

      (24) Feng, J.; Chen, J. C.; Xiao, B.; Zhou, C. T.; Hong, Z. J.; Zhou, R. Physica B 2009, 404, 246.

    25. [25]

      (25) Hamann, D. R. Phys. Rev. Lett. 1996, 76, 660.  

    26. [26]

      (26) Zupan, A.; Blaha, P.; Schwarz, K.; Perdew, J. P. Phys. Rev. B 1998, 58, 11266.  

    27. [27]

      (27) Patil, S. K. R.; Khare, S. V.; Tuttle, B. R.; Bording, J. K.; Kodambaka, S. Phys. Rev. B 2006, 73, 104118.  

    28. [28]

      (28) Wu, Z. J.; Zhao, E. J.; Xiang, H. P.; Hao, X. F.; Liu, X. J.; Meng, J. Phys. Rev. B 2007, 76, 054115.  

    29. [29]

      (29) Hou, Y. Q.; Zhang, X. D.; Jiang, Z. Y. Acta Phys. Sin. 2010, 59, 5667. [侯榆青, 张小东, 姜振益. 物理学报, 2010, 59, 5667.]

    30. [30]

      (30) Zhao, J. J.;Winey, J. M.; Gupta, Y. M. Phys. Rev. B 2007, 75, 094105.  

    31. [31]

      (31) Reuss, A. Z. Angew. Math. Mech. 1929, 9, 49.  

    32. [32]

      (32) Hill, R. Proc. Phys. Soc. 1952, 65, 349.  

    33. [33]

      (33) Zerr, A.; Kempf, M.; Schwarz, M.; Kroke, E.; Gǒken, M.; Riedel, R. J. Am. Ceram. Soc., 2002, 85, 86.

    34. [34]

      (34) Jiang, J. Z.; Lindelov, H.; Gerward, L.; Stahl, K.; Recio, J. M.; MoriSanchez, P.; Carlson, S.; Mezouar, M.; Dooryhee, E.; Fitch, A.; Frost, D. J. Phys. Rev. B, 2002, 65, 161202.  

    35. [35]

      (35) Kroll, P.; Milko, M. Z. Anorg. Allg. Chem. 2003, 629, 1737.  

    36. [36]

      (36) Li, Y. F.; Gao, Y. M.; Xiao, B.; Min, T.; Fan, Z. J.; Ma, S. Q.; Xu, L. L. J. Alloy. Compd. 2010, 502, 28.  

    37. [37]

      (37) Li, D. H.; Zhu, X. L.; Su,W. J.; Cheng, X. L. Acta Phys. Sin. 2010, 59, 2004. [李德华, 朱晓玲, 苏文晋, 程新路. 物理学报, 2010, 59, 2004.]

    38. [38]

      (38) Ravindran, P.; Fast, L.; Korzhavyi, P. A.; Johansson, B.;Wills, J.; Eriksson, O. J. Appl. Phys. 1998, 84, 4891.  

    39. [39]

      (39) Ranganathan, S. I .; Starzewski, M. O. Phys. Rev. Lett. 2008, 101, 055504.  

    40. [40]

      (40) Sung, C. M.; Sung, M. Mater. Chem. Phys. 1996, 43, 1.  

    41. [41]

      (41) Ching,W. Y.; Mo, S. D.; Ouyang, L.; Rulis, P.; Tanaka, I.; Yoshiya, M. J. Amer. Ceram. Soc. 2002, 85, 75.

    42. [42]

      (42) Letsoalo, T.; Lowther, J. E. Physica B 2008, 403, 2760.  

    43. [43]

      (43) Gilman, J. J.; Cumberland, R.W.; Kaner, R. B. Int. J. Refractory Metals & Hard Mater. 2006, 24, 1.

    44. [44]

      (44) Gao, F. M.; He, J. L.;Wu, E. D.; Liu, S. M.; Yu, D. L.; Tian, Y. J. Phys. Rev. Lett. 2003, 91, 11237.

    45. [45]

      (45) Ahmed, R.; Aleem, F. E.; Hashemifar, S. J.; Akbarzadeh, H. Physica B 2008, 403, 1876.  

    46. [46]

      (46) Xiao, B.; Feng, J.; Zhou, C. T.; Xing, J. D.; Xie, X. J.; Cheng, Y. H.; Zhou, R. Physica B 2010, 405, 1274.  

    47. [47]

      (47) Gao, F. M. Phys. Rev. B 2006, 73, 132104.  

    48. [48]

      (48) Wang, H. Y.; Chen, X. R.; Zhu,W. J.; Cheng, Y. Phys. Rev. B 2005, 72, 172502.  


  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    7. [7]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    10. [10]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    11. [11]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    15. [15]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    19. [19]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    20. [20]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

Metrics
  • PDF Downloads(1629)
  • Abstract views(3152)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return