Citation: CAO Xiao-Wei, LIU Wen-Hua, LI Xin-Ran, WANG Rong, WU Xia-Qin. SERS Spectroscopic Characterization and Analysis of the Molecular Structure of Linkage Monolayers in Assembled ld Nanoparticle Films[J]. Acta Physico-Chimica Sinica, ;2011, 27(07): 1600-1608. doi: 10.3866/PKU.WHXB20110723 shu

SERS Spectroscopic Characterization and Analysis of the Molecular Structure of Linkage Monolayers in Assembled ld Nanoparticle Films

  • Received Date: 24 November 2010
    Available Online: 27 May 2011

    Fund Project: 国家自然科学基金(20775049, 20973114)资助项目 (20775049, 20973114)

  • Molecular assembly was used to prepare a 4,4′-dithiodipyridine (PySSPy) self-assembled monolayers (SAMs) modified ld electrode. The prepared PySSPy SAMs modified on ld electrode were then used as linkage monolayers to fabricate ld nanoparticle assembled films. In our research, surface- enhanced Raman scattering (SERS) technique was used to investigate the structural characteristics of the linkage monolayers. Moreover, electrochemical in situ SERS spectroscopy was used to characterize the effect of electrode potential on the molecular structure of this linkage monolayer. An analysis of the regular variations in intensities and shifts of the characteristic Raman peak pairs related to the adsorbed molecules in this linkage monolayer, such as at 1011 and 1093 cm-1, 1575 and 1610 cm-1, 1206 and 1215 cm-1, revealed that the aromaticity of the pyridyl ring groups in the linkage monolayer changed with the applied electrode potential. The results show that the adsorbed molecule exists mainly in the form of a thiol tautomer in the negative potential range while it exists mainly in the form of a thione tautomer in the positive potential range.

  • 加载中
    1. [1]

      (1) Ulman, A. Chem. Rev. 1996, 96, 1533.  

    2. [2]

      (2) Smallery, J. F.; Feldberg, S.W.; Chidesy, C. E. D.; Linford, M. R.; Newton, M. D.; Liu, Y. P. J.Phys.Chem. 1995, 99, 13141.  

    3. [3]

      (3) Sun, L.; Crooks, R. M.; Ricoo, A. J. Langmuir 1993, 9, 1775.  

    4. [4]

      (4) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.;Walter, D. G.; Natan, M. J. Science 1995, 267, 1629.  

    5. [5]

      (5) Zhu, T.; Zhang, X.;Wang, J.; Fu, X. Y.; Liu, Z. F. Thin Solid Films 1998, 327-329, 595.

    6. [6]

      (6) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293.  

    7. [7]

      (7) Mulvaney, S. P.; Keating, C. D. Anal. Chem. 2000, 72, 145R.

    8. [8]

      (8) Chumanov, G.; Sokolov, K.; Gre ry, B.W.; Cotton, T. M. J. Phys. Chem. 1995, 99, 9466.  

    9. [9]

      (9) Cao, X.W.; Qian, Q. Q.; Deng,W. Q.; Zhang, T. T. Acta Chim. Sin. 2010, 68, 107. [曹晓卫, 钱庆庆, 邓卫芹, 张婷婷. 化学学报, 2010, 68, 107.]

    10. [10]

      (10) Fu, X. Y.; Mou, T.;Wang, J.; Zhu, T.; Liu, Z. F. Acta Phys.-Chim. Sin. 1998, 14, 968. [符小艺, 牟涛, 王健, 朱涛, 刘忠范. 物理化学学报, 1998, 14, 968.]

    11. [11]

      (11) Zhou,W.; Baunach, T.; Ivanova, V.; Kolb, D. M. Langmuir 2004, 20, 4590.  

    12. [12]

      (12) Hu, J.; Zhao, B.; Xu,W.; Li, B.; Fan, Y. Spectrochimica Acta A 2002, 58, 2827.  

    13. [13]

      (13) Sawaguchi, T.; Mizutani, F.; Yoshimoto, S.; Taniguchi, I. Electrochim. Acta 2000, 45, 2861.  

    14. [14]

      (14) Taniguchi, I.; Yoshimoto, S.; Yoshida, M.; Kobayashi, S. I.; Miyawaki, T.; Aono, Y.; Sunatsuki, Y.; Taira, H. Electrochim. Acta 2000, 45, 2843.  

    15. [15]

      (15) Yu, H. Z.; Xia, N.; Liu, Z. F. Anal. Chem. 1999, 71, 1354.  

    16. [16]

      (16) Taniguchi, I.; Iseki, M.; Yamaguchi, H.; Yasukouchi, K. J. Electroanal.Chem. 1985, 186, 299.  

    17. [17]

      (17) Zhang, B.;Wang, R.; Zhu, G. Y.; Cao, X.W.;Wu, X. Q.; Zhang, Z. R.; Ohsaka, T. Electrochemistry 2007, 13, 1. [张蓓, 王荣, 朱国阳, 曹晓卫, 吴霞琴, 章宗穰, 大阪武男. 电化学, 2007, 13, 1.]

    18. [18]

      (18) Nogueira, H. I. S.; Cruz, S. M. G.; Soares-Santos, P. C. R.; Ribeiro-Claro, P. J. A.; Trindade, T. J. Raman Spectrosc. 2003, 34, 350.  

    19. [19]

      (20) Cao, X.W. J. Raman Spectrosc. 2005, 36, 250.  

    20. [20]

      (19) Chen, T. K.; Luo, G.; Ewing, A. G. Anal. Chem. 1994, 66, 3031.  

    21. [21]

      (21) Gao, P.;Weaver, M. J. J. Phys. Chem. 1985, 89, 5040.  

    22. [22]

      (22) Patterson, M. L.;Weaver, M. J. J. Phys. Chem. 1985, 89, 5046.  

    23. [23]

      (23) Baldwin, J. A.; Schühler, N.; Butler, I. S.; Andrews, M. P. Langmuir 1996, 12, 6389.  

    24. [24]

      (24) Baldwin, J. A.; Vlckova, B.; Andrews, M. P.; Butler, I. S. Langmuir 1997, 13, 3744.  

    25. [25]

      (25) Jung, H. S.; Kim, K.; Kim, M. S. J. Mol. Struct. 1997, 407, 139.  

    26. [26]

      (26) Lin-Vien, D.; Colthup, N. B.; Fateley,W. G.; Grasselli, J. G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Academic Press: San Die , 1991; pp 295-301.

    27. [27]

      (27) Green, J. H. S. Spectrochim. Acta A 1968, 24, 1627.  

    28. [28]

      (28) Huang, Y. F.; Yin, N. N.;Wang X.;Wu, D. Y.; Ren, B.; Tian, Z. Q. Chem. Eur. J. 2010, 16, 1449.  

    29. [29]

      (29) Moskoovits, M. Rev. Mod. Phys. 1985, 57, 783.  

    30. [30]

      (30) Bunding, K. A.; Bell, M. I. Surface Science 1983, 118, 329.

    31. [31]

      (31) Baunach, T.; Ivanova, V.; Scherson, D. A.; Kolb, D. M. Langmuir 2004, 20, 2797.  

    32. [32]

      (32) Diógenes, I. C. N.; Carvalho, I. M. M.; Longhnotti, E.; Lopes, L. G. F.; Temperini, M. L. A.; Andrade, G. F. S.; Moreira, í. S. J. Electroanal. Chem. 2007, 605, 1.  

    33. [33]

      (33) Diógenes, I. C. N.; Sousa, J. R.; Carvalho, I. M. M.; Temperini, M. L. A.; Tanaka, A. A.; Moreira, Í. S. Dalton Trans. 2003, 11, 2231.

    34. [34]

      (34) Diógenes, I. C. N.; Nart, F. C.; Temperini, M. L. A.; Moreira, í. S. Inorg. Chem. 2001, 40, 4884.  

    35. [35]

      (35) Chao, Y.W.; Zhou, Q.; Li, Y.; Yan, Y. Y.;Wu, Y.; Zheng, J.W. J. Phys. Chem.C 2007, 111, 16990.  

    36. [36]

      (36) Liu,W. H.; Cao, X.W.;Wang, H. H.; Dai, Y. T.;Wang, R.;Wu, X. Q.; Zhang, Z. R. The Journal of Light Scattering 2008, 20, 27. [刘文华, 曹晓卫, 王洪华, 戴钰婷, 王荣, 吴霞琴, 章宗穰. 光散射学报, 2008, 20, 27.]


  • 加载中
    1. [1]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    4. [4]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    5. [5]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    6. [6]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    7. [7]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    17. [17]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    20. [20]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

Metrics
  • PDF Downloads(1633)
  • Abstract views(2963)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return